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Abstract In the past two decades, significant advances
have been made in understanding the structural and func-
tional properties of biological networks, via graph-theoretic
analysis. In general, most graph-theoretic studies are con-
ducted in the presence of serious uncertainties, such as major
undersampling of the experimental data. In the specific case
of neural systems, however, a few moderately robust experi-
mental reconstructions have been reported, and these have
long served as fundamental prototypes for studying con-
nectivity patterns in the nervous system. In this paper, we
provide a comparative analysis of these “historical” graphs,
both in their directed (original) and symmetrized (a common
preprocessing step) forms, and provide a set of measures
that can be consistently applied across graphs (directed or
undirected, with or without self-loops). We focus on simple
structural characterizations of network connectivity and find
that in many measures, the networks studied are captured by
simple random graph models. In a few key measures, how-
ever, we observe a marked departure from the random graph
prediction. Our results suggest that the mechanism of graph
formation in the networks studied is not well captured by
existing abstract graph models in their first- and second-order
connectivity.

Keywords Graph theory · Network structure · Random
graphs · Scale-free graphs · Mammalian brain · C. elegans ·
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1 Introduction

Since Stanley Milgram’s six degrees of separation (Mil-
gram 1967), the characterization of topological structure has
become a major focus of graph-theoretic investigations in
complex networks (Costa et al. 2007). In recent years, stud-
ies of this kind have begun to play an important role in a
wide variety of disciplines, ranging from communications
and power systems engineering to molecular and popula-
tion biology (Albert et al. 1999; Albert and Barabási 2002;
Dorogovtsev and Mendes 2002; Alm and Arkin 2003; Alon
2003; Bray 2003; Newman 2003; Barabási and Oltvai 2004).
Often, by applying simple graph-theoretic measures, it is pos-
sible to find similarities in real-world graphs describing sys-
tems in many different domains, and also to separate these
graphs into a number of representative classes, by highlight-
ing their differences. Several studies have moved forward to
connect such shared similarities to abstract, theoretical mod-
els of graph generation, which in turn can then be used to
further investigate real-world graphs beyond the limitations
imposed by the technologies currently available for the large-
scale reconstruction of connectivity.

Two of the most successful of these models are the small-
world and scale-free graphs (Watts and Strogatz 1998; Albert
et al. 1999; for a general review, see Boccaletti et al. 2006;
Newman 2010). In particular, scale-free graphs are viewed as
a crucial prerequisite for complex dynamical behaviors and
have been identified as a unifying feature of many real-world
graphs (Barabási and Bonabeau 2003; Amaral and Ottino
2004). In recent years, however, several studies have chal-
lenged the empirical support for scale-free properties in many
real-world graphs and their mechanistic backing (Clauset et
al. 2009; Lima-Mendez and Helden 2009; Stumpf and Porter
2012). There is a growing consensus that the evidence for
scale-free properties needs to be carefully reconsidered. The
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insights gained from this may in turn lead to a deeper under-
standing of the underlying mechanisms producing the large-
scale structure seen in real-world systems.

Among the most challenging real-world systems for
graph-theoretic characterization are the strongly intercon-
nected networks of the nervous system. Here, the analysis of
the structural makeup of these graphs has shown no consis-
tent evidence for scale-free properties. One of the reasons for
this lack could be the severe undersampling due to technical
limitations in the experimental reconstructions. A few moder-
ately robust experimental reconstructions do exist, however,
both of neural connectivity graphs (Varshney et al. 2011) and
areal connectivity maps (Modhaa and Singh 2010), and these
data suggest that scale-free organization is rather unlikely, as
the number of connections per graph node generally does not
span multiple scales. Furthermore, it is known in the mam-
malian cortex that the typical number of synaptic connections
for a single neuron varies over one or, at most, two orders
of magnitude (Braitenberg and Shüz 1998), ruling out the
possibility of power-law organization over multiple scales in
this structural network. While this argumentation does not
necessarily apply to functional brain networks, and there has
been evidence recently presented for their scale-free orga-
nization (e.g., see Eguíluz et al. 2005), other studies have
report conflicting observations (Lima-Mendez and Helden
2009; Stumpf and Porter 2012) and this remains an open
question (for review, see Bullmore and Sporns 2009).

In this study, we provide a comparative analysis of sev-
eral “historical” reconstructions of structural neural graphs,
including areal connectivity maps of the cat and macaque
monkey cortex, as well as the neural connectivity graph of
the nematode Caenorhabditis elegans. The general subject
of interest here is the assessment of the structural connec-
tivity pattern in these graphs. To this end, we introduce
a mathematically consistent set of measures for relational
graphs (directed or undirected, with or without self-loops),
for characterizing the basic features of connectivity in these
graphs. Specifically, we consider the node degree distribu-
tions, the structural equivalence of graph nodes, as well as
nearest-neighbor degree and assortativity. Throughout this
work, all measures are defined in their most general fash-
ion, for directed graphs, but yield their forms known from
the literature when applied to undirected graphs. By then
applying the same measures to both the original directed and
symmetrized undirected versions of each considered graph,
we demonstrate that the process of symmetrization not only
places limits on the characterization of graphs, but also intro-
duces a systematic bias in measurement.

We find that the investigated networks share a strong com-
ponent of randomness in their structural makeup, suggesting
a mechanism of their formation that is much less constrained
than that required for scale-free graphs. The graph structures
observed in these data, furthermore, differ from that of the

Erdős-Rényi random graphs. In particular, they differ from
the latter by their specific node degree distribution and strong
correlations of incoming and outgoing connections for indi-
vidual nodes.

2 Methods

2.1 Graph theory preliminaries

A graph or network is comprised of a set of nodes that are
linked by a set of edges. Two general types of graphs can be
distinguished: undirected graphs, for which all edges act as
bidirectional links between two nodes, and directed graphs
(digraphs), in which case each edge is endowed with a direc-
tion pointing from a source node to a target node. In both
cases, the spatial position of nodes can be considered (spa-
tial graphs) and edges can exhibit properties such as a delay
(delayed graphs) or weight (weighted graphs). Relational
graphs are those excluding these additional properties, tak-
ing only the relations, or adjacencies, between nodes into
account.

In this work, only relational graphs will be considered.
In this case, the relationship between nodes can be mathe-
matically formulated using an adjacency matrix ai j , i, j ∈
[1, NN ], where NN denotes the number of nodes in the given
graph. If node i makes a connection to node j , then ai j = 1,
otherwise ai j = 0. Undirected graphs are a special case of
digraph with symmetric adjacency matrix, i.e., ai j = a ji .

Special attention is required for the diagonal elements
aii of the adjacency matrix, which describe self-loops. In
the case of digraphs, a self-looped node acts both as tar-
get and source, so that nonzero diagonal elements contribute
always two edges to a graph. For undirected graphs, this also
leads to the contribution of two edges per self-looped node.
This definition, however, deviates from that commonly used,
because historically, undirected graphs were considered first,
and most notions in modern graph theory will use only one
edge per undirected link. In this paper, we will follow the lat-
ter notion with the exception of self-loops, which contribute
two edges, and present all measures utilized in both their
undirected and directed forms.

For a general introduction to graph theory, its measures,
and applications, we refer to Diestel [2000], Boccaletti et al.
[2006], Newman [2010].

2.2 Analysis methods

In this study, we used graph data that are publicly available.
No modifications of the original data were performed. How-
ever, some of the graphs experienced a certain level of mod-
ifications since their first investigation. Therefore, numeri-
cal results reported in this study might deviate slightly from
results reported in earlier studies.
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It is a common practice in applying graph-theoretic mea-
sures to empirical data to symmetrize the adjacency matrix
prior to analysis. Throughout this paper, both the original,
directed graphs and their undirected, symmetrized versions
are considered. Undirected graphs were symmetrized by set-
ting ai j = 1 for each pair (i, j) with a ji = 1. The reduction to
the giant component and subsequent analysis was performed
on the symmetrized versions of the original graphs.

In some cases, we constructed corresponding Erdős-Rényi
graph models for the given graphs with the same num-
ber of nodes, edges, and node degree distributions (node
in/out-degree distributions for digraphs). These exact degree-
matched Erdős-Rényi graph models (EDM) were obtained
using the cygraph implementation of a sophisticated model
introduced in Genio et al. [2010] and Kim et al. [2012].
When considering EDM graphs, 1,000 random realiza-
tions were used for each parameter set to ensure statistical
stability.

Numerical analysis was performed using the custom soft-
ware cygraph and Mathematica. A cygraph binary (Mac
OSX), all graph data, and analysis protocols are available
for download.1

2.3 “Historical” biological neural graphs

We study the structural aspects of a number of publicly avail-
able biological neural graphs used in the literature in the past
two decades. These include areal connectivity graphs of the
cat and macaque monkey cortex, as well as the neuronal con-
nectivity graph of the nematode C. elegans. Below, we briefly
describe these graphs and the notation used throughout this
paper. More information on the data sources can be found in
the references.

Cat neural graphs

The first set contains the areal connectivity graph including
all cortical and thalamic areas of the cat brain (CC1), and a
graph containing only the 52 cortical areas (CC2). Structural
connection data for both CC1 and CC2 were first reported
in Scannell et al. [1999] and obtained by analyzing a large
collection of individual connection tracing studies done in
the cortical and thalamic nuclei of the cat cerebral hemi-
sphere. Available connection matrices2 describe graphs con-
taining 95 nodes and 2126 directed edges (CC1), and 52
nodes and 818 directed edges (CC2). Both graphs were stud-
ied in detail in Sporns and Zwi [2004] and Sporns and Ktter
[2004].

1 http://www.cydyns.com;http://www.newscienceportal.com/MLR.
2 https://sites.google.com/site/bctnet/datasets.

C. elegans neural graphs

Three variants of the neuronal connectivity graph of the
nematode worm C. elegans most often used throughout the
literature were studied. Data for the first two (CE1 and CE2)
are based on the experimental data from White et al. [1986]
and were modified and made public in Watts and Strogatz
[1998]. Available connection matrices3 describe graphs con-
taining 306 nodes and 2,345 directed edges (CE1), and 297
nodes with 2,345 directed edges (CE2).

The third dataset (CE3) constitutes the most recent and
complete connectivity graph of C. elegans and was first dis-
cussed in Chen et al. [2006] (for a comprehensive review,
see Varshney et al. 2011). The available connection matrix4

describes a graph containing 279 nodes and 2,996 directed
edges.

All graph data describe the synaptic connections between
neurons of the C. elegans brain, with distinction of directed
chemical synapses and undirected electrical junctions. In this
paper, we will not consider this distinction, but view both
chemical synapses and electrical junctions as part of the same
connectivity structure (see Varshney et al. 2011; Rudolph-
Lilith et al. 2012 for an analysis of both subgraphs).

Macaque monkey neural graphs

Various graphs of the macaque brain were considered. The
most complete dataset (MB1) describes the macaque brain’s
long-distance areal connections and was first described in
Modhaa and Singh [2010]. The obtained connectivity data2

were assembled from the CoCoMac (Collation of Connectiv-
ity data on the Macaque brain) database. The latter is a grow-
ing collection of annotated information about a large number
of published tracing studies performed in the macaque brain
(Stephan et al. 2001; Kötter 2004). The investigated graph
contains 383 nodes describing the various brain regions of
the macaque monkey and 6,602 directed edges.

A second graph (MC1) describes the areal connectivity
pattern of the macaque cortex, based on the original data pub-
lished in Young [1993], and investigated in detail in Sporns
and Tononi [2002] and Sporns [2002]. The available connec-
tion matrix2 describes a graph containing 71 nodes and 746
directed edges.

A third graph (MC2) contains the macaque cortical con-
nectivity within one hemisphere, based on the data from Choe
et al. [2004], Kötter [2004], and Kaiser and Hilgetag [2006].

3 CE1: http://wiki.gephi.org/index.php/Datasets; CE2: http://
www-personal.umich.edu/~mejn/netdata/ with modifications by
M. Newman.
4 http://wormatlas.org/neuronalwiring.html.
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Table 1 Basic graph-statistical measures were applied to the original
directed and symmetrized (undirected) versions of the considered neural
graphs

NN NL Directed Undirected

A A Co A Co

CC1 95 0 2,126 0.1829 0.2331 2,340 0.2566

CC2 52 0 818 0.4117 0.2968 1,030 0.3737

CE1 306 0 2,345 0.9083 0.0250 4,296 0.0457

CE2 297 0 2,345 0.9083 0.0265 4,296 0.0486

CE3 279 3 2,996 0.6917 0.0384 4,580 0.0586

MB1 383 0 6,602 0.7323 0.0449 10,416 0.0708

MC1 71 0 746 0.2968 0.1459 876 0.1714

MC2 94 0 2,390 0.4224 0.2676 3,030 0.3393

MNC1 47 0 505 0.3866 0.2238 626 0.2775

MVC1 30 0 311 0.3632 0.3344 380 0.4086

MVC2 32 0 315 0.3763 0.2983 388 0.3674

Shown are values for the number of nodes NN , number of self-loops
NL , total adjacency A (Eq. 1; NE given in Eq. 2), asymmetry index A
(Eq. 3; A = 0 for undirected graphs) and connectedness Co (Eq. 4)

The available dataset5 describes a graph containing 94 nodes
and 2,390 directed edges.

Finally, we analyzed the visual and sensorimotor area
corticocortical connectivity graph of the macaque neocortex
(MNC1) and two areal connectivity graphs of the macaque
visual cortex (MVC1, MVC2). The MNC1 graph was first
studied and made public in Honey et al. [2007]. The avail-
able dataset2 describes a graph containing 47 nodes and 505
directed edges. MVC1 and MVC2 are two variants of the
visual cortical connectivity originally published in Felleman
and Essen [1991] and investigated in detail in Sporns et al.
[2000] and Sporns and Ktter [2004]. The available datasets2

describe graphs containing 30 nodes and 311 directed edges
(MVC1), and 32 nodes with 315 directed edges (MVC2).

The basic graph-theoretic properties of these graphs are
listed in Tables 1 and 2, and further discussed below.

2.4 Connected components

A (strongly) connected component is defined as a subgraph
consisting of a set of nodes from which all other nodes in
the subgraph can be reached, and which can be reached from
all other nodes, by following existing edges. Typically, the
set of (strongly) connected components of a graph will be
dominated by a giant (strongly) connected component of size
Sgcc, defined as the number of nodes in this component (Boc-
caletti et al. 2006). We calculated the number of connected
components (strongly connected components, in the case of

5 http://www.biological-networks.org/?page_id=25.

Table 2 Basic node degree analysis of original directed and sym-
metrized (undirected) versions of the considered neural graphs

Directed Undirected

δin �in δout �out 〈ai 〉 δ � 〈ai 〉
CC1 2 55 2 52 22.38 2 61 24.63

CC2 7 32 3 34 15.73 7 37 19.81

CE1 0 134 0 39 7.66 0 134 14.04

CE2 0 134 0 39 7.90 1 134 14.46

CE3 0 83 0 57 10.73 2 93 16.41

MB1 0 105 0 109 17.24 0 149 27.20

MC1 0 26 1 28 10.51 1 28 12.34

MC2 0 73 1 54 25.43 1 74 32.23

MNC1 1 23 2 23 10.74 3 27 13.32

MVC1 2 19 4 20 10.37 5 22 12.67

MVC2 0 19 2 20 9.84 2 22 12.13

Listed are the minimum and maximum node degree δ and �, respec-
tively (δα and �α for digraphs; α ∈ {in, out}), and the average node
degree 〈ai 〉 (Eq. 14)

digraphs) Ncc and the size of the giant connected component
(giant strongly connected component for digraphs) Sgcc.

Table 3 summarizes the numerical results for the con-
sidered biological neural graphs and their symmetrizations,
along with the asymmetry index, minimal, maximal, and
average node degrees, δ, �, and 〈ai 〉, respectively. Natu-
rally, the connectedness of the giant connected component
is slightly larger than that of the original graphs, whereas the
asymmetry index A is slightly smaller for graphs whose size
of the giant connected component is smaller than the NN of
the original graph.

Throughout this work, we restrict our analysis to the giant
connected (for undirected versions of the considered graphs)
and giant strongly connected (for the original digraphs) com-
ponents. Furthermore, as indicated in Table 3, the giant
(strongly) connected components of CE1 and CE2 are iden-
tical, and in the following, only CE1 will be considered.

3 Adjacency, connectance, asymmetry

In a first step, we analyzed all considered graphs with respect
to basic graph-statistical measures. These include the number
of self-loops NL , defined as the number of nonzero diagonal
elements aii in the adjacency matrix, and the total adjacency
A, defined as the sum over all entries in the adjacency matrix,
with diagonal elements (self-loops) counting two:

A =
NN∑

i, j=1

ai j + NL . (1)

Using the total adjacency, the number of edges NE is defined
as
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Table 3 Connected component analysis of original directed and symmetrized (undirected) versions of various neural graphs

Directed Undirected

Ncc Sgcc A A Co δ/�in δ/�out 〈ai 〉 Ncc Sgcc A Co δ/� 〈ai 〉
CC1 1 95 2,126 0.1829 0.2331 2/55 2/52 22.38 1 95 2,340 0.2566 2/61 24.63

CC2 1 52 818 0.4117 0.2968 7/32 3/34 15.73 1 52 1,030 0.3737 7/37 19.81

CE1 66 239 1,912 0.8864 0.0333 1/42 1/38 8.00 10 297 4,296 0.0485 1/134 14.46

CE2 57 239 1,912 0.8864 0.0333 1/42 1/38 8.00 1 297 4,296 0.0485 1/134 14.46

CE3 6 274 2,962 0.6871 0.0393 1/82 1/57 10.80 1 279 4,580 0.0586 2/93 16.41

MB1 33 351 6,491 0.7265 0.0525 1/103 1/108 18.49 24 360 10,416 0.0801 1/149 28.93

MC1 2 70 745 0.2952 0.1499 2/26 2/28 10.64 1 71 876 0.1714 1/28 12.34

MC2 10 85 2,356 0.4092 0.3223 1/65 1/54 27.72 1 94 3,030 0.3393 1/74 32.23

MNC1 1 47 505 0.3866 0.2238 1/23 2/23 10.74 1 47 626 0.2775 3/27 13.32

MVC1 1 30 311 0.3632 0.3344 2/19 4/20 10.37 1 30 380 0.4086 5/22 12.67

MVC2 3 30 311 0.3632 0.3344 2/19 4/20 10.37 1 32 388 0.3674 2/22 12.13

Shown are values for the number of connected components Ncc, the size of the giant connected component Sgcc, total adjacency A (NE given in
Eq. 2), asymmetry index A (A = 0 for undirected graphs), connectedness Co, the minimum and maximum node degree δ and �, respectively
(δ{in,out} and �{in,out} for directed graphs), and the average node degree 〈ai 〉 for the giant connected components

NE =
{

A directed
A/2 undirected .

(2)

The asymmetry index A quantifies the ratio between
the number of non-symmetrical edges NA and symmetri-
cal edges NS , and is given by Wasserman and Faust [1994],
Newman et al. [2002], Serrano and Boguñá [2003], but see
Garlaschelli and Loffredo [2004]

A = NA

A − NS
, (3)

where NA is the number of node pairs (i, j | j ≥ i) for which
ai j �= a ji , and NS is the number of node pairs (i, j | j ≥ i) for
which ai j = a ji = 1. It can be shown that 0 ≤ A ≤ 1, and
that Eq. 3 holds for self-looped and non-self-looped graphs.

Finally, the graph connectedness (or connectance) Co, a
measure of relative graph connectivity, is defined as (Boc-
caletti et al. 2006; Newman 2010)

Co = NE

N max
E

=
{

A
NN (NN +1)

self-looped
A

NN (NN −1)
not self-looped,

(4)

where N max
E denotes the number of possible edges in a com-

plete, i.e., maximally connected, graph:

N max
E =

⎧
⎪⎪⎨

⎪⎪⎩

NN (NN + 1) directed, self-looped
NN (NN − 1) directed, not self-looped
1
2 NN (NN + 1) undirected, self-looped
1
2 NN (NN − 1) undirected, not self-looped.

It can be shown that 0 ≤ Co ≤ 1. We note that Eq. 4 gener-
alizes the commonly used definition of the connectedness to
graphs containing self-loops (e.g., see Boccaletti et al. 2006;
Newman 2010).

The basic graph-statistical properties of both the directed
and symmetrized (undirected) versions of the investigated
neural graphs are listed in Table 1. Of these graphs, only
CE3 has self-loops, accounting for about 0.1 % of the graph’s
edges, which stem from electrical junctions connecting a
node with itself. If not specified otherwise, these self-loops
were included in the analysis.

Naturally, the total adjacency A is larger for the undi-
rected version of the corresponding graphs, as symmetriza-
tion of the adjacency matrix only adds edges to a given
digraph. By symmetrizing a graph, the total adjacency and,
thus, the connectedness can increase by more than 50 %, as
in the case of the C. elegans neural graph (CE1 and CE2),
where the connectedness of the symmetrized undirected
graph (Coud ) is about 1.828 times greater than that of the
original directed version (Cod ), in addition to other instances
(CE3: Coud ∼ 1.526 Cod , MB1: Coud ∼ 1.577 Cod ). Thus,
the consideration of undirected versions of digraphs might
already at this level introduce a significant mischaracteriza-
tion of investigated graphs.

Due to the symmetrization procedure, the connectedness
is intrinsically dependent on the asymmetry of the consid-
ered graph. The higher the asymmetry A , the more edges
will be added, yielding a higher connectedness in the undi-
rected version of a given digraph (Fig. 1a). A theoreti-
cal relationship between the ratio of the connectedness for
digraphs and their undirected equivalents, and the asymmetry
index can be obtained by observing that the total adjacency
Ad = NA +2NS for digraphs takes after symmetrization the
form Aud = 2(NA + NS). This yields

Ad = Aud
(

1 − 1

2
A

)
.
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Fig. 1 Relation of connectedness and asymmetry index in various bio-
logical neural graphs and their giant connected components. a The ratio
between connectedness of the symmetrized (undirected) version of a
graph (Coud ) and its directed original (Cod ) increases with the asym-
metry index of the digraph. The solid line shows the theoretical relation,
Eq. 5. b In biological neural digraphs, high connectedness appears to
be linked with a lower asymmetry index. The dashed line shows the
analytical result for a Erdős-Rényi graph model, Eq. 9. In both pan-
els, results are shown for the original digraphs (black dots), their giant
connected components (gray dots), and corresponding exact degree-
matched Erdős-Rényi graph models (open dots)

If we assume that the number of nodes in both the directed
and its symmetrized version is the same, this gives, together
with Eq. 4, the desired relation

Coud

Cod
= 2

2 − A
, (5)

shown in Fig. 1a (solid). However, the numerical results for
the giant component, as well as the corresponding EDM

graphs, deviate from Eq. 5 (Fig. 1a, compare gray and open
dots with black solid line). The reason for this deviation
is simply that, in the case of undirected graphs, the giant
connected components were obtained from their original
digraphs after symmetrization (see Methods). This leads to
a change in the number of nodes in the constructed giant
components of corresponding digraph and undirected graph,
therefore Eq. 5 no longer applies.

Interestingly, a weak relationship between connectedness
and asymmetry index can also be found when considering
digraphs only (Fig. 1b), with graphs of higher connectedness
being associated with a weaker asymmetry. Such a link is
expected, however, and can be calculated analytically in the
case of directed Erdős-Rényi (ER) graphs. Excluding (for
simplicity) self-loops, the total adjacency is pNN (NN − 1),
where p denotes the connection probability of a classical ER
graph. With the total number of possible edges in a directed,
not self-looped ER graph being N max

E = NN (NN − 1), the
connectedness Co = p. Node pairs (i, j) with ai j = 1 ∧
a ji = 1 occur here with a probability of p2. These are the
only contribution to the number of symmetric edges NS , thus
yielding

NS = p2 N max
E

2
. (6)

In a similar fashion, node pairs (i, j) with ai j = 1 ∧ a ji = 0
or ai j = 0 ∧ a ji = 1 occur with a probability p(1 − p) each
and contribute to the number of non-symmetrical edges NA,
yielding

NA = 2p(1 − p)
N max

E

2
. (7)

With this, the asymmetry index (Eq. 3) of a ER graph is given
by

A = 2
1 − Co

2 − Co
, (8)

which yields the desired relationship between connectedness
and asymmetry

Co = 2
A − 1

A − 2
. (9)

The theoretical result for classical ER graph models
(Eq. 9) is independent of the number of nodes and is shown
in Fig. 1a (dashed line). Although displaying the same qual-
itative behavior, namely a decrease in the connectedness for
increasing asymmetry index, the quantitative results for the
investigated neural graphs deviate significantly from the the-
oretic expectation for ER graph models. Even after the incor-
poration of the exact node degree distribution using the EDM
graph models (Fig. 1a, gray circles), the results still devi-
ate markedly from that observed in their biological coun-
terparts. This suggests that a random distribution of edges

123



Biol Cybern (2014) 108:381–396 387

with a given degree distribution cannot account for the rela-
tionship between connectedness and asymmetry observed in
biological neural digraphs. However, adding a correlation
between node in and out degree will increase the probabil-
ity of occurrence of node pairs (i, j) with ai j = a ji = 1,
thus increase the number of symmetric edges NS and pro-
portionally lower the number of non-symmetric edges NA.
According to Eq. 3, this will effectively lead to a decrease in
A for a given connectedness. As demonstrated in the Supple-
mentary Information (Graph assortativity), such a correlation
between a node’s in and out degree is indeed what we observe
in the investigated biological graphs.

4 Node degrees

To further characterize the structural aspects of biological
neural digraphs, we calculated the node in and out degrees

ain
i =

NN∑

j=1

a ji (10)

aout
i =

NN∑

j=1

ai j (11)

as well as the node degree

ai =
NN∑

j=1

ai j + aii (12)

for the corresponding symmetrized graphs. Note that the def-
inition of the node degree in Eq. 12 deviates from that com-
monly employed through the inclusion of self-loops, which
are considered as contributing two edges to adjacency rela-
tions (one in-edge and one out-edge pointing to the same
node, see above). This definition is more natural, as it is a
direct result of the definition of ai for digraphs in Eqs. 10
and 11. By defining terms in this way, undirected graphs
become a special case of digraphs, which then assume the
more fundamental role. With this, the handshaking lemma,
which provides a consistency relation linking the sum over
all node degrees with the total adjacency of a graph, takes
a more general form valid for both directed and undirected
self-looped graphs:

NN∑

i=1

ai = 2(A − NL) , (13)

where ai = ain
i + aout

i for digraphs.
Given the node (in/out-) degrees of a graph, we define the

minimum and maximum node (in/out-) degree, respectively,
as δ (δα) and � (�α), α ∈ {in, out}. Furthermore, the average
node in/out degree 〈aα

i 〉 for directed and average node degree
〈ai 〉 for undirected graphs is given by

〈ai 〉 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
NN

NN∑
i=1

ain
i = 〈ain

i 〉 = 〈aout
i 〉 = 1

NN

NN∑
i=1

aout
i

Directed

1
NN

NN∑
i=1

ai Undirected.

(14)

Note that due to the handshaking lemma, Eq. 13, we have
〈ain

i 〉 = 〈aout
i 〉.

Results for the investigated biological graphs are sum-
marized in Table 2. In two of the investigated graphs (CE1
and MB1), the minimal node degrees δα and δ in both the
directed and undirected version, respectively, are zero. Fur-
thermore, the minimal total node degree in these graphs is
also zero, indicating the existence of nodes without edges.
Further analysis revealed that in the directed version of CE1,
the number of weakly connected components, i.e., subgraphs
whose nodes are connected by at least one directed edge to
other nodes in the same subgraph, is 10, with the size of the
largest weakly connected component being 297 nodes. Thus,
with a total of 306 in this graph, the remaining 9 components
share 9 nodes, i.e., each of the remaining weakly connected
components contains only one isolated node. The same argu-
mentation applies to the undirected version of CE1. The MB1
graph has one giant weakly connected component with 351
nodes, and the remaining 32 connected components share 32
isolated nodes. The existence of these isolated nodes in the
neural graphs suggests that the mapping of these graphs is
incomplete, as such nodes are very unlikely to have a func-
tional or structural meaning. Therefore, in the remainder of
this study, we will focus our analysis on the giant (strongly)
connected component of each investigated graph (see Meth-
ods, Connected components).

5 Node degree distributions

A prevalent theme in the literature of the past two decades is
scale-free properties of various real-world systems, typically
investigated by fitting corresponding physical quantities with
power-law distributions. However, recently it was pointed out
that in many cases, such a fit provides only a poor descrip-
tion of the true behavior, or at best a faithful representation
in only a narrow region of the investigated quantities’ value
range (Clauset et al. 2009; Lima-Mendez and Helden 2009).
This is especially crucial when considering small systems, for
which boundary effects cannot feasibly be neglected. More-
over, claims of scale-free properties, with little or no support
from experimental data, may distract further search for mech-
anisms by which such networks form and develop.

In order to assess the extent to which the power law pro-
vides a valid description of structural characteristics of bio-
logical neural graphs, we studied the node degree probabil-
ity density functions (PDFs: node in-degree and out-degree
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PDFs for digraphs) of these graphs. The power-law model is
defined by

ρ pl(a;α) = aα−1
min (α − 1)a−α , (15)

where a denotes the node degree and amin the lower bound of
the fitting interval. In addition, we applied other fitting mod-
els proposed in the literature (see Clauset et al. 2009). The
second model considered was the “power law with cutoff,”
defined by

ρ plwc(a;α, λ) = 1

�[1 − α, λamin]λ
1−αa−αe−λa , (16)

where �[s, x] is the incomplete gamma function. We note
that due to the exponential term, this model carries none of
the implications commonly associated with the power-law
model (i.e., scale-free characteristics), as this term replaces
the power-law properties at both tails of the distribution, leav-
ing only the dominance of the power-law behavior within a
certain characteristic scale. However, to avoid confusion and
to remain in accordance with the literature (Clauset et al.
2009), we retain this terminology through the remainder of
the paper.

Further models utilized were the stretched exponential
model

ρse(a;β, λ) = βλeλaβ
min aβ−1e−λaβ

(17)

and gamma model

ρg(a; θ, k) = 1

�[k]ak−1e−a/θ θ−k . (18)

The latter is equivalent to the power law with cutoff model
when considering k ↔ (1 − α) and θ ↔ 1/λ. Finally, the
log-normal model

ρln(a;μ, σ) = N
1

a
exp

[
− (ln a − μ)2

2σ 2

]
(19)

with

N =
√

2

πσ 2

(
erfc

[
ln amin − μ√

2σ 2

])−1

and the Poisson model

ρ p(a;μ) = Ñ
1

�[a + 1]μ
a (20)

with

Ñ =
(

eμ −
amin−1∑

k=0

μk

�[k + 1]

)−1

were considered. In all cases, amin = 1 was used, except
for the power-law model, which only allowed fitting the tail
of the degree distributions. Moreover, all fitted models were
constrained by the normalization condition

∞∫

amin

ρα(a; •) da = 1 , (21)

where α ∈ {plwc, se, g, ln, p} and • stands for the set of
parameters of the corresponding model, with the exception
of the power-law model. As the latter fits only the tail of
a given PDF, the normalization constant was adjusted to the
fraction of the node degree PDF ρ(ai ) above the lower bound,
i.e.,

∞∫

amin

ρ pl(ai ;α) =
∞∫

amin

ρ(ai ) . (22)

Representative examples of the node degree PDFs for the
cat cortex graph (CC1) and the neural connectivity graph
of C. elegans (CE3) are shown in Fig. 2a, b, respectively.
Among the graphs considered, only the node degree distri-
butions of MC2 did not allow for a reasonable fit with any
of the above models, both in the directed and undirected ver-
sion (Fig. 2c). This hints either at a very peculiar connectivity
pattern in this graph, as it describes the cortical connectivity
pattern in only one hemisphere, or its incomplete represen-
tation due to missing experimental data. Additionally, in no
case, the Poisson model (Eq. 20) delivered an acceptable fit
of the node degree PDFs (Fig. 2, black dashed), for which
reason it was excluded from further consideration.

The obtained best fitting parameters of the node degree
models, using the nonlinear least-squares method in Mathe-
matica, are summarized in Tables 4, 5 and 6, and visualized
in Fig. 3a. A detailed presentation of the fitting results using
the various models, including the standard error, t-statistics,
and P-value of the fitted parameters, as well an analysis of the
decomposition of the variation in the data attributable to the
fitted function and to the residual errors (ANOVA test) along
with the root-mean-square difference between actual and pre-
dicted values can be found in the Supplementary Information,
Fitting of node degree distributions.

Interestingly, in all fitted models, except the power law,
a weak correlation between fitted parameters and the graph
connectedness Co for both node in/out degree (digraphs) and
node degree (undirected graphs) PDFs was found (Fig. 3b).
Specifically, the α parameter in the power law with cutoff
model appears to decrease with increasing connectedness
(Fig. 3b, top left). This may reflect the fact that smaller α

values lead to a shift of the mean degree to higher values,
thus in turn reflecting the higher connectivity. Due to the
relation k = 1 − α between α of the power law with cutoff
model and gamma model, a similar relation holds for gamma
fits of the PDFs, with k increasing for higher Co (Fig. 3b,
top right).

Both parameters of the stretched exponential model, β

and λ, show a weak dependency on the connectedness
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Fig. 2 Representative examples of node degree probability density
functions and their fits. a CC1, b CE3, c MC2. For digraphs, the PDFs
(gray bar plots) of node in degree (left) and node out degree (middle)
are shown, for undirected graphs, the PDFs of the node degree (right).
Best fits of the node degree distributions are provided by the power
law with cutoff/gamma model (Eq. 16; orange solid), followed by the

stretched exponential model (Eq. 17; green solid) and log-normal model
(Eq. 19; blue solid). The power-law model (Eq. 15; red solid) provides
an approximate fit of the tail of a given node degree PDF only. In all
considered graphs, the Poisson model (Eq. 20; black dashed) did not
deliver an acceptable fit of the data. Insets show the corresponding data
in log–log representation

of the graphs, with β increasing and λ decreasing for
increasing Co (Fig. 3b, bottom left and middle). For λ,
this dependency reflects again the shift in the mean degree
to higher values for more highly connected graphs. Inter-
estingly, for the β parameter in this model, this relation
appears to be inverted, with smaller β values leading to
broader distributions but being associated with smaller con-
nectedness. However, the stretched exponential model dis-
plays a strong correlation between the fitted parameters

(Fig. 3b, bottom middle, inset). This is not the case in
the other two-parameter models. Thus, the impact of both
β and λ on the shape of the distribution cannot be con-
sidered as independent; this explains the peculiar behavior
when both parameters are considered to be independent.
Finally, a weak correlation between connectedness and σ

of the log-normal model was found, with broader distribu-
tions (smaller σ ) being associated with higher connected-
ness.
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Table 4 Power-law fits of the tail degree distributions for various bio-
logical neural graphs

Power-law model

αin αout α

CC1 3.4448 2.9610 3.8817

CC2 3.4922 3.7824 2.3411

CE1 2.8122 2.8068 3.1565

CE3 2.7072 3.4023 2.7054

MB1 2.1281 2.2697 2.3336

MC1 3.0592 2.7606 2.6497

MC2 4.0459 (6.6290) 3.6015

MNC1 1.7702 1.7275 2.0251

MVC1 1.9798 2.7790 2.7924

MVC2 1.7711 2.7790 2.7573

The values give the best fitting parameters α{in,out} and α according to
Eq. 15 for the node in/out degree and node degree PDFs of the directed
and undirected versions of the graphs, respectively. Values in parenthe-
ses are excluded from Fig. 3

For assessing the quality of the different models, we com-
pared the root mean squares of the fit residuals, i.e., differ-
ences between the actual and predicted node degree values.
We found that the power law with cutoff and gamma model
provided, on average, the best fits, closely followed by the
stretched exponential and log-normal model. This evaluation
is consistent with the conclusion reached in Clauset et al.
[2009]. Most interestingly, the nature of these node degree
distributions (gamma or power law with cutoff) could be
consistent with a simple local mechanism responsible for
generating neural graphs. In this way, we may conceive of a
graph generation mechanism more parsimonious than those
currently in the literature, such as preferential attachment

(first discussed as the “Matthew effect” in Merton 1968; see
also Barabási and Albert 1999). In this model, knowledge
about the degree distribution of the whole network must be
present at the individual nodes in order to bias new con-
nections toward those that are already highly connected. We
term such knowledge about the whole network that must be
present at the level of individual nodes “nonlocal,” to contrast
with “local” generation mechanisms that can be implemented
without additional information at the single-node level (see
Discussion).

6 Structural equivalence

In order to assess the similarity of the connectivity pattern of
individual nodes, various measures of structural equivalence
were defined and used in the literature. Here, two nodes are
defined as structurally equivalent if they share the same pat-
tern of relationships with all other nodes in a given graph.
A first coarse measure quantifying a pattern of relationships
among nodes in digraphs is the Euclidean distance between
rows and columns of the adjacency matrix (Boccaletti et al.
2006), defined as

Din−in
i j =

⎧
⎨

⎩

NN∑

k=1

(aki − akj )
2

⎫
⎬

⎭

1/2

(23)

Din−out
i j =

⎧
⎨

⎩

NN∑

k=1

(aki − a jk)
2

⎫
⎬

⎭

1/2

(24)

Dout−out
i j =

⎧
⎨

⎩

NN∑

k=1

(aik − a jk)
2

⎫
⎬

⎭

1/2

(25)

Table 5 Power law with cutoff and gamma fits of the node degree distributions for various biological neural graphs

Power law with cutoff model Gamma model

αin λin αout λout α λ θ in kin θout kout θ k

CC1 −1.9885 0.1212 −1.4334 0.0995 −1.4159 0.0885 8.2456 2.9891 10.0439 2.4338 11.3001 2.4163

CC2 −5.4192 0.4135 −1.8189 0.1680 −3.6622 0.2293 2.4169 6.4233 5.9539 2.8193 4.3598 4.6636

CE1 −0.7030 0.2277 −0.1054 0.1333 −2.1114 0.2281 4.1422 1.7442 6.3163 1.1787 4.3814 3.1114

CE3 −1.6139 0.2769 −1.1791 0.2084 −2.7632 0.2612 3.5851 2.6229 4.7285 2.1953 3.8276 3.7635

MB1 0.3211 0.0351 0.3322 0.0281 −0.1318 0.0361 21.8775 0.7280 28.9742 0.7063 26.8478 1.1439

MC1 −1.6364 0.2462 −1.2988 0.2077 −1.3638 0.1684 4.0623 2.6365 4.8144 2.2989 5.8766 2.3823

MC2 −5.4764 0.1988 (−20.7122) 0.6916 (−15.7716) 0.4560 5.0266 6.4798 1.4455 (21.7190) 2.1922 (16.7780)

MNC1 −0.6411 0.1180 −1.7654 0.2445 −1.7342 0.1913 −6.4050 1.6074 4.0904 2.7656 5.2265 2.7344

MVC1 −4.4855 0.5045 −3.4864 0.4100 −7.7057 0.6615 1.9820 5.4858 2.4385 4.4869 1.5100 8.7159

MVC2 −4.4855 0.5045 −3.4864 0.4100 −6.1531 0.5291 1.9820 5.4858 2.4385 4.4869 1.8898 7.1533

The values give the best fitting parameters α{in,out}, λ{in,out} and α, λ according to Eq. 16 as well as θ {in,out}, k{in,out} and θ , k according to Eq. 18 for
the node in/out degree and node degree PDFs of the directed and undirected versions of the graphs, respectively. Both fitting models are qualitatively
equivalent. Values in parentheses are excluded from Fig. 3
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Table 6 Stretched exponential and log-normal fits of the node degree distributions for various biological neural graphs

Stretched exponential model Log-normal model

β in λin βout λout β λ μin σ in μout σ out μ σ

CC1 2.0180 1.4140×10−3 1.7297 3.5818× 10−3 1.7717 2.6172×10−3 3.1299 0.6495 3.0851 0.7146 3.2057 0.7395

CC2 2.8725 3.3298×10−4 1.8293 4.9790× 10−3 2.3767 6.7242×10−4 2.7072 0.4171 2.7145 0.6526 2.9535 0.4941

CE1 1.3953 5.6656×10−2 1.0540 1.0567× 10−1 1.9149 6.1237×10−3 1.8429 0.9189 1.8158 1.1163 2.5433 0.5951

CE3 1.8187 1.5470×10−2 1.6044 2.0917× 10−2 2.1206 3.0620×10−3 2.1561 0.7096 2.2170 0.7773 2.6015 0.5483

MB1 0.7751 1.0642×10−1 0.7816 8.9299× 10−2 1.1078 2.1859×10−2 2.5100 1.5886 2.7913 1.8178 3.2205 1.3011

MC1 1.7632 1.3072×10−2 1.6654 1.6043× 10−2 1.7744 8.4554×10−3 2.2461 0.6905 2.2642 0.7655 2.5209 0.7640

MC2 3.1522 (1.6068×10−5) (5.0710) (2.2765× 10−8) (4.6665) (4.3361×10−8) 3.4657 0.4108 3.4417 0.2109 3.5959 0.2497

MNC1 1.4838 1.9558×10−2 1.8212 1.0289× 10−2 1.8120 7.0028×10−3 2.5110 0.8737 2.3030 0.6657 2.5353 0.6771

MVC1 2.5811 1.8229×10−3 2.3898 2.8284× 10−3 3.4395 1.1885×10−4 2.3429 0.4509 2.3330 0.5116 2.5502 0.3503

MVC2 2.5811 1.8229×10−3 2.3898 2.8284× 10−3 3.0058 3.4508×10−4 2.3429 0.4509 2.3330 0.5116 2.5726 0.3887

The values give the best fitting parameters β{in,out}, λ{in,out} and β, λ according to Eq. 17 as well as μ{in,out}, σ {in,out} and μ, σ according to Eq. 19
for the node in/out degree and node degree PDFs of the directed and undirected versions of the graphs, respectively. Values in parentheses are
excluded from Fig. 3

Note that here [Din−out
i j ]T = Din−out

j i = Dout−in
i j , leaving

the three independent measures of Euclidean distance in
Eqs. 23–25. The above definition holds for digraphs with
self-loops. If self-loops are excluded, the sum in Eqs. 23–25
runs over k �= {i, j}. The above definitions hold for undi-
rected graphs as well. However, due to the symmetry of the
adjacency matrix in this case, we have in addition the rela-
tion Din−in

i j = Dout−out
i j = Din−out

i j , thus leaving only one
independent Euclidean distance measure. Moreover, in the
case of undirected graphs, Din−out

i i = 0, which reflects the
fact that here, for each given node, the columns and rows of
the adjacency matrix are identical.

According to the notion of structural equivalence, two
structurally perfectly equivalent nodes will have identical
entries in their corresponding rows and columns in the adja-
cency matrix. With Eqs. 23 and 25, one thus expects an
Euclidean distance Din−in

i j = Dout−out
i j = 0. A similar con-

clusion can, however, not be made for Din−out
i j , as the notion

of perfect structural equivalence between two nodes does not
require a matching pattern in the incoming connection of one
node and outgoing connection of another node.

We calculated the Euclidean distance of node adjacen-
cies, Eqs. 23–25, for the giant connected component of the
investigated biological neural graphs. To statistically eval-
uate the distance between two nodes, we considered var-
ious subsets of the obtained NN × NN matrices Dα−β

i j ,

α, β ∈ {in, out}. First, Din−in
i j , i �= j provides the Euclid-

ean distances between the incoming edges of two different
nodes. Secondly, Din−out

i j = Dout−in
j i provides the Euclid-

ean distance between incoming and outgoing edges of two
nodes, including the same node. Dout−out

i j , i �= j yields the
distances between outgoing edges of two different nodes.
Finally, Din−out

i i contains the Euclidean distances between

incoming and outgoing edges of the same node. For each of
these subsets of Euclidean distances, we calculated the mean,
standard deviation, minimum and maximum value, first and
third quartile, and median.

Representative examples of the Euclidean distance statis-
tical analysis are shown in Fig. 4 (left; a complete representa-
tion of Euclidean distances can be found in the Supplemen-
tary Information, Data Tables). We found that in digraphs,
the mean and median of Din−in

i j,i �= j , Din−out
i j and Dout−out

i j,i �= j , and

in undirected graphs, the mean and median of Din−in
i j,i �= j and

Din−out
i j are almost identical, a behavior expected from a

random, i.e., independent, distribution of edges in differ-
ent nodes. This behavior was shared among all investigated
graphs (Fig. 4, middle and right).

In not self-looped random graphs with connectedness Co,
ai j = 1 with probability Co (see above). Thus, two adjacen-
cies with ai j = 1 and amn = 0 will occur with probability
Co(1 − Co). As the latter adjacency relations constitute the
only contributions to the Euclidean distance,

Dα−β
i j = √

2NN Co(1 − Co) , (26)

α, β ∈ {in, out}, for Erdős-Rényi graphs (Fig. 4, left, red
dotted). The relative deviation

�E R Dα−β =

∣∣∣∣Dα−β
i j − DE R α−β

i j

∣∣∣∣

DE R α−β
i j

, (27)

where Dα−β
i j and DE R α−β

i j denote the mean of the Euclid-

ean distances Dα−β
i j for a given graph and its corresponding

Erdős-Rényi graph was found to be almost zero (Fig. 4, right,
blue end of color range). This observation provides further
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Fig. 3 Best parameter fits for node degree PDFs of various biologi-
cal neural graphs. a Distribution of best fitting parameters for various
models (Eqs. 15–19). b For some models, a correlation between fitted

model parameters and graph connectedness Co was found. The insets
show the qualitative role of the parameter on the model distribution

evidence suggesting that the distribution of edges in different
nodes of biological neural graphs follows a simple random
pattern.

When considering in edges and out edges of the same
node, however, we find that this is not the case. Here, by
definition, one expects Din−out

i i = 0 in undirected graphs,

whereas in digraphs, if assuming a random distribution of
edges, Din−out

i i should take values in accordance with Eq. 26.
Our analysis reveals that the mean and median of Din−out

i i is
significantly lower than expected from a pure random assign-
ment of edges, leading to �E R Dα−β significantly larger than
zero (Fig. 4, right). The latter suggests that the distribution
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out: Dout−out
i j,i �= j , in-out*: Din−out

i i ), for directed and undirected versions

of CC1. The red line indicates the value expected for corresponding
Erdős-Rényi graph models. Middle Mean of Euclidean distance of node
adjacencies for all investigated biological neural graphs. Right relative
deviation �E R Dα−β (Eq. 27) from corresponding Erdős-Rényi graph
models

of edges in biological neural graphs, although being con-
sistent with a minimal random model, exhibits a significant
correlation between in and out edges for individual nodes.

Finally, as a confirmation and extension of the structural
equivalence analysis presented in this section, we replicated
these results using a similar measure of structural equiv-
alence (see Supplementary Information, Structural Corre-
lation Analysis) and then performed a thorough analysis
of assortativity in the neural graphs under consideration
(see Supplementary Information, Graph Assortativity). In
the latter analysis, we observe a weak dissortative tendency
throughout the graphs considered, indicating that nodes make
connections, on average, to others with the same, or slightly
higher, degree. The magnitudes observed here, however, are
smaller than those previously reported (Newman 2002), indi-
cating that the magnitude of this effect is generally weaker
than that of the other effects considered in this study.

7 Discussion

In this work, we have completed a detailed comparative
analysis of several networks fundamental to the application
of graph theory in neuroscience, while challenging the perti-
nence of several established graph-theoretic concepts in the
context of neural connectivity patterns. Contrary to many
results reported in the neuroscientific literature, the biolog-
ical graphs studied here show in many measures a consis-
tency with randomness, as opposed to a consistency with sim-
ple models of graph construction, such the scale-free graph
(Barabási and Albert 1999).

Firstly, we found that fits of the node degree distributions
are in accordance with a gamma model, supporting the idea of
a simple local mechanism responsible for generating neural
graphs. Notably, the degree distributions observed here differ
from those of the Erdős-Rényi graph widely used in computa-

tional neuroscience, which may have an effect on the dynam-
ics of the networks modeled (Roxin 2011). Secondly, the
Euclidean distance of node adjacencies and node degree cor-
relations was observed to be consistent with an independent
random distribution of node connections for different nodes,
but with strong correlations between incoming and outgo-
ing connections for the same node. Taken together, these
two observations indicate that at the first and second orders
of connectivity, neural graphs can be largely described by a
random process at the level of single node, coupled with a
bias toward reciprocal connections.

This consistency with randomness is not fully surprising,
as any conceivable mechanism that could give rise to such a
structural makeup will be subject to fewer constraints com-
pared to graph models conceived to fulfill a specific set of
structural requirements. In particular, for scale-free graphs,
various generating algorithms have been proposed, ranging
from static models to evolving models more closely reflecting
processes found in nature. Typically, static models construct
scale-free graphs by imposing global constraints, such as the
scale-free node degree distribution itself (Aiello et al. 2000;
Chung and Lu 2002) or fitness (Goh et al. 2001; Caldarelli
et al. 2002). The most prominent model of evolving scale-
free graphs is the classical growth and preferential attach-
ment model (Barabási and Albert 1999), originally studied as
“Matthew effect” (Merton 1968) or “cumulative advantage”
(Solla Price 1965), and its generalizations (Dorogovtsev et
al. 2000; Ravasz and Barabási 2003). Here, the probability
of linking two nodes is (linearly) proportional to the actual
node degree, requiring the generating algorithm to keep track
of all node degrees and, thus, nonlocal information about
the graph at any stage of its construction. Further studies
on generative mechanisms for scale-free graphs share this
requirement, including models utilizing accelerated growth
(Dorogovtsev and Mendes 2001), which require the knowl-
edge of the network size at any stage of construction, finite
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node memory models (Klemm and Eguíluz 2002), which
require the knowledge of the activity state of each node in
the graph, or duplication and divergence models (Goh et al.
2002; Vázquez et al. 2003), which require copies of arbitrar-
ily selected graph nodes. Importantly, all these models are
crucially dependent on information about the degree distri-
bution of the network to be present at the individual node
during graph construction, a requirement not necessary for
generating graphs consistent with the observations presented
in this study.

Perhaps the most surprising result from this work is that
certain graph-theoretic quantities, such as the form of the
degree distribution and the abundance of reciprocal connec-
tions, seem to be conserved across networks spanning vastly
different spatial scales and functional roles. The conserved
form of a unimodal, slightly skewed degree distribution may
reflect a locally random process, where the elements of circuit
construction interact with their immediate surroundings. At
the microscopic level, such deviation from the classical ran-
dom model may have important consequences for the state
space of the dynamics in spiking networks, as for example
addressed by interpolating between binomial and power-law
degree distributions in Roxin [2011]. Reciprocal connectiv-
ity patterns have been discussed previously in studies ranging
from local cortical microcircuits (Song et al. 2005; Ko et al.
2011) to areal connectivity (Felleman and Essen 1991; Essen
2005). In this work, we present the first systematic analysis
to confirm the prevalence of this reciprocal connectivity in
neural graphs spanning multiple spatial scales, and to exclude
the generality of the other two-edge connectivity patterns in
a thorough fashion.

In recent years, deviations from the occurrence of two-
edge motifs in purely random connectivity have begun to
receive interest in the computational literature and have been
found to have consequences on macroscopic properties of
the network dynamics (Hennequin et al. 2012; Pernice et al.
2013), specifically in relation to synchronization (Zhao et
al. 2011; Hu et al. 2013). Furthermore, in a previous exper-
imental study (Song et al. 2005), the implications and pos-
sible relations of two-edge motifs to known plasticity mech-
anisms were emphasized through the analysis of the synap-
tic weight distribution of bidirectionally connected neuron
pairs. Emergence of bidirectional connections resulting from
spike-timing-dependent plasticity has also been observed in
simulations of small-scale networks (Clopath et al. 2010;
Bourjaily and Miller 2011; Vasilaki and Giugliano 2012), and
studied mathematically in Gilson et al. [2009] and Babadi and
Abbott [2013], though this remains to be thoroughly studied
in large-scale simulations of networks with biologically real-
istic activity states.

Finally, we note that some studies have critiqued the valid-
ity of the random graph null hypothesis (Artzy-Randrup et
al. 2004), noting specifically that the spatial nature of certain

networks could confound the statistical comparison to a ran-
dom graph for measures taken from real-world graphs (as in
Milo et al. 2002). In this work, we compare the measures for
structural similarity to those of an equivalent random graph;
however, we note that it is additionally possible with such
an analysis to detect statistical differences between subsets
of the Euclidean distance and structural correlation matrices
(see Fig. 4, left panel). Such a comparison, free from a ran-
dom graph null hypothesis, can be explored in future work.

In conclusion, while there has been a great interest in
recent years in the possibility that structural graphs share
important features in common with abstract models of graph
generation, we hope that, in future work, not only greater
care will be taken in the support of such claims, but also more
measurement and theory will be developed toward the dis-
covery of new, specific graph-theoretic models with explana-
tory power able to meet the challenges of the next generation
of large-scale experimental network reconstructions.
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