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a b s t r a c t

One of the simplest polynomial recursions exhibiting chaotic behavior is the logistic map
xn+1 = axn(1 − xn) with xn, a ∈ Q : xn ∈ [0, 1] ∀n ∈ N and a ∈ (0, 4], the discrete-
time model of the differential growth introduced by Verhulst almost two centuries ago
(Verhulst, 1838) [12]. Despite the importance of this discrete map for the field of nonlinear
science, explicit solutions are known only for the special cases a = 2 and a = 4. In this
article, we propose a representation of the Verhulst logistic map in terms of a finite power
series in the map’s growth parameter a and initial value x0 whose coefficients are given by
the solution of a system of linear equations. Although the proposed representation cannot
be viewed as a closed-form solution of the logistic map, it may help to reveal the sensitivity
of the map on its initial value and, thus, could provide insights into the mathematical
description of chaotic dynamics.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Let n ∈ N and a, xn ∈ Q. The function

p : [0, 1] −→ Q (1)

with

p(xn) = axn(1 − xn) (2)

defines a discrete recursion

xn+1 = p(xn) (3)

called the Verhulst logistic map [12]. It can be shown that xn ∈ [0, 1] ∀n for a ∈ (0, 4] and x0 ∈ [0, 1]. Moreover, as the
initial value x0 determines all future values of the system, Eq. (3) defines a deterministic Markovian system which exhibits
chaotic dynamics for all ac < a ≤ 4 with ac ∼ 3.569945672 . . . defined as the edge of chaos.

Despite its simplicity, the logisticmap (3) has served since its popularization some 40 years ago (see [6]) as a prototypical
dynamical system exhibiting complex chaotic behavior, and must be viewed as one of the most influential recursive
equations which helped to shape the field of nonlinear science (for a recent review, see [2]). However, only two explicit
closed-form solutions in the parameter space considered here are known to date, namely for the special cases a = 2 and
a = 4 [10,5], and the general case can only be treated numerically or statistically (e.g., see [4]). For a = 4, an approach
utilizing invariants of associated difference equations and their embedding into a Hilbert space by using Bose operators
was explored by Steeb and Hardy [11], and can be applied to higher-dimensional maps. Previous attempts to solve (3)
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explicitly for arbitrary a include multi-dimensional functional integrals [9] and infinite-dimensional matrices [3,8], but did
not provide a closed-form solution akin to those known for the aforementioned special cases. Recently, it was argued that
such closed-form or smooth solutions cannot exist for generic values of a, except for a even and nonzero [13]. However,
when numerically exploring the ‘‘deviation’’ of the generic case from the known solution at a = 4 as a function of a for any
given n, a non-trivial yet smooth dependency can be observed [1], suggesting that at least a general solution smooth in a,
albeit not necessarily closed-form, may exist.

In this article, we make use of an infinite-dimensional matrix operator acting on Q∞ to describe the evolution of the
logistic map from its initial state (Section 2). The explicit form of this operator is considered (Section 3), which effectively
‘‘linearizes’’ the discrete recursive quadratic map (3) by allowing for an explicit representation in terms of a finite power
series in themap’s growthparameter a and initial value x0, with coefficients given in terms of the solution of an exponentially
growing systemof linear equations (Section 4). Althoughhere also no simple closed-form solution is presented, the proposed
representation might shed light on the nature of chaotic systems as well as their mathematical description.

2. Operator representation of the logistic map recursion

Lemma 1. The logistic map (3) is equivalent to the recursive mapping

A : Q∞
−→ Q∞ (4)

with

xn+1 = A ◦ xn, (5)

n ∈ N : n ≥ 0, where A denotes the infinite-dimensional matrix operator

aij =

(−1)j−i


i
j − i


ai ∀i, j ∈ N : i ≥ 1, i ≤ j ≤ 2i

0 otherwise,
(6)

aij ∈ Q, and

xn =


xn
x2n
x3n
...

 ∈ Q∞. (7)

Proof. To show (6), we make use of the Carleman linearization [3,8]. To that end, consider successive powers of the logistic
map (3):

xn+1 = axn(1 − xn) = axn − ax2n
x2n+1 = a2x2n(1 − xn)2 = a2x2n − 2a2x3n + a2x4n
...

xmn+1 = amxmn (1 − xn)m = am
m

k=0

(−1)k
m
k


xk+m
n

....

Defining the vector xn according to (7), this system of nonlinear equations can be put into the form

xn+1,i =

∞
j=1

aij xn,j, (8)

where xn,i denotes the ith component of xn and aij the components of the matrix

A =



a −a 0 0 0 0
0 a2 −2a2 a2 0 0
0 0 a3 −3a3 3a3 −a3 · · ·

0 0 0 a4 −4a4 6a4

0 0 0 0 a5 −5a5
...

 ,
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that is

aij =

i
k=0

δi,j−k(−1)k


i
k


ai

≡

(−1)j−i


i
j − i


ai ∀i, j ∈ N : i ≥ 1, i ≤ j ≤ 2i

0 otherwise. �

The operator A is an infinite-dimensional strict upper triangular matrix with, for a ≠ 0, non-vanishing entries for
i ≤ j ≤ 2i (wedge-matrix) and non-zero diagonal elements, hence invertible and diagonalizable. Moreover, for any given i
and finite n, the sum in (8) will always terminate for j > 2i.

With Lemma 1, we can now formulate

Proposition 1. The logistic map (3) takes the explicit form

xn = An
◦ x0, (9)

n ∈ N : n ≥ 1, where An denotes the nth power of the matrix operator A, i.e.

(an)ij =


(−1)j−iai


i

j − i


for n = 1

(−1)j−iai
2i

l1=i

2l1
l2=l1

· · ·

2ln−2
ln−1=ln−2

a

n−1
p=1

lp


i
l1 − i

 
ln−1

j − ln−1

 n−2
p=1


lp

lp+1 − lp


for n ≥ 2

(10)

∀i, j ∈ N : i ≥ 1, i ≤ j ≤ 2ni. All other (an)ij vanish.

Proof. Repeated application of the recursive map (5) yields

xn = A ◦ A ◦ · · · ◦ A  
n times

◦x0.

AsA is amatrix, these n successive applications of the operatorA are equivalent to taking the nth power ofA, thus yielding (9).
To show (10), one directly evaluates An. For n = 1, the matrix operator (6) itself is obtained. For n ≥ 2, one has

(an)ij =

∞
l1=1

∞
l2=1

· · ·

∞
ln−1=1

ail1al1 l2 · · · aln−1j

=

∞
l1=1

∞
l2=1

· · ·

∞
ln−1=1

ail1aln−1j

n−2
p=1

alp lp+1

=

2i
l1=i

2l1
l2=l1

· · ·

2ln−2
ln−1=ln−2

(−1)l1−i+j−ln−1
n−2
p=1


(−1)lp+1−lp


ai+ln−1+

n−2
p=1 lp


i

l1 − i

 
ln−1

j − ln−1

 n−2
p=1


lp

lp+1 − lp


.

In the last step, the explicit form of aij was used. As successive terms in the first product will cancel, the last equation can be
simplified, yielding (10). Moreover, due to the wedge-shape of aij, this expression holds ∀i, j ∈ N : i ≥ 1, i ≤ j ≤ 2ni, with
all other (an)ij being zero. �

We note that Proposition 1 provides the explicit form of the original recursive map (5) in terms of a finite power series
in the parameter a, with minimum order ni and maximum order i +

n−1
p=1 2

pi = (2n
− 1)i for any given i ≥ 1 and n ≥ 1.

However, the number of terms in this power series grows exponentially with n, and a closed-form expression is made
difficult due to the presence of (n − 1) nested sums over products of binomial coefficients.

3. Finite power series expansion of the operator representation

Proposition 1 can be used to represent the logistic map explicitly in terms of a finite power expansion in both the
parameter a and initial value x0. To that end, we introduce the following set of coefficients V (n)

kij ∈ N:
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Definition 1.

V (n)
kij :=

2i
l1=i

2l1
l2=l1

· · ·

2ln−2
ln−1=ln−2  

l1+l2+···+ln−1=k


i

l1 − i

 
ln−1

j − ln−1

 n−2
p=1


lp

lp+1 − lp


(11)

∀n ∈ N : n ≥ 2, ∀i, j ∈ N : i ≥ 1, i ≤ j ≤ 2ni and k ∈ N : (n − 1)i ≤ k ≤ (2n
− 2)i. All other V (n)

kij are zero.

The coefficients defined as such no longer depend on the parameter a, and thus yield

(an)ij = (−1)j−iai
(2n−2)i
k=(n−1)i

V (n)
kij ak (12)

for the nth power (n ≥ 2) of the matrix operator A. Interestingly, the coefficients V (n)
kij link the dynamics of the logistic map

to a particular partitioning of integers, specifically the subset of partitions of a given integer k into sums of (n − 1) integers
lp, p ∈ [1, n−1]where i ≤ l1 ≤ 2i and lp−1 ≤ lp ≤ 2lp−1 for p > 1. As wewill see below, the logistic map can be completely
formulated in terms of V (n)

kij .
To further simplify notation, we also define a set of functions V (n)

ij (a) ∈ Q according to

Definition 2.

V (n)
ij (a) :=

(2n−2)i
k=(n−1)i

V (n)
kij ak

=

2i
l1=i

2l1
l2=l1

· · ·

2ln−2
ln−1=ln−2

a

n−1
p=1

lp


i
l1 − i

 
ln−1

j − ln−1

 n−2
p=1


lp

lp+1 − lp


(13)

∀n ∈ N : n ≥ 2 and ∀i, j ∈ N : i ≥ 1, i ≤ j ≤ 2ni. All other V (n)
ij (a) are identically zero.

Functions defined as such depend explicitly on a, and yield

(an)ij = (−1)j−i V (n)
ij (a) ai (14)

for the nth power (n ≥ 2) of the matrix operator A.

Lemma 2. The functions V (n)
ij (a) obey the recursive algebraic relations

V (n+1)
ij (a) =

i
q=0

ai+q


i
q


V (n)
i+q,j(a) (15)

V (n+1)
ij (a) =

2n i
q=i

aq


q
j − q


V (n)
iq (a) (16)

∀n ∈ N : n ≥ 2 and ∀i, j ∈ N : i ≥ 1, i ≤ j ≤ 2n+1i.

Proof. To show (15), we use the definition of the functions (13) for (n + 1) and sum over l1. After changing the summation
variable to q = l1 − i, one obtains

V (n+1)
ij (a) =

i
q=0

2(i+q)
l2=i+q

· · ·

2ln−2
ln−1=ln−2

2ln−1
ln=ln−1

ai+q+
n

p=2 lp


i
q

 
ln

j − ln

 n−1
p=1


lp

lp+1 − lp



=

i
q=0

ai+q


i
q

 2(i+q)
l1=i+q

· · ·

2ln−3
ln−2=ln−3

2ln−2
ln−1=ln−2

a
n−1

p=1 lp


i + q
l1 − (i + q)

 
ln−1

j − ln−1

 n−2
p=1


lp

lp+1 − lp



=

i
q=0

ai+q


i
q


V (n)
i+q,j.

Here we relabeled the summation variables according to lp+1 → lp and made use of the definition of V (n)
ij .
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To show (16), we first argue that the (n − 1) nested sums in (13) can be decoupled by changing the summation limits
for each lp. Through simple inspection, one infers that the minimal value each lp can take is i, and the maximal value

cannot exceed 2pi. With this, the lp-relevant term in the argument of (13) is given by
2lp−1

lp=lp−1


lp−1

lp−lp−1

 
lp

lp+1−lp


with

i ≤ lp−1 ≤ 2p−1i. Given a lp−1, the argument of this term will vanish if lp < lp−1, leaving the first non-vanishing term for
lp = lp−1 and all other terms with i ≤ lp < lp−1 zero. Similarly, given a lp−1, the argument will vanish for lp > 2lp−1 due to

lp−1
lp−lp−1


=


lp−1

2lp−1−lp


, leaving the last non-vanishing term for lp = 2lp−1 and all other terms with 2lp−1 < lp ≤ 2 · 2p−1i

zero. With this, (13) takes for (n + 1) the form

V (n+1)
ij (a) =

2i
l1=i

4i
l2=i

· · ·

2n−1 i
ln−1=i

2n i
ln=i

a
n

p=1 lp


i

l1 − i

 
ln

j − ln

 n−1
p=1


lp

lp+1 − lp


.

Performing the sum over ln yields

V (n+1)
ij (a) =

2ni
q=i

aq


q
j − q

  2i
l1=i

4i
l2=i

· · ·

2n−1 i
ln−1=i

a
n−1

p=1 lp


i
l1 − i

 
ln−1

q − ln−1

 n−2
p=1


lp

lp+1 − lp


,

where we relabeled ln → q. The term in the curly brackets is identical to V (n)
ij (a) for j → q, thus proving (16). �

By utilizing the definition of the functions V (n)
ij (a) in terms of V (n)

kij given in Eq. (13), corresponding recursive relations
between the coefficients can be found.

Lemma 3. The coefficients V (n)
kij obey the recursive algebraic relations

V (n+1)
kij =

2i
p=i

(2n−2)p
q=(n−1)p  
p+q=k


i

p − i


V (n)
qpj (17)

V (n+1)
kij =

(2n−1)i
p=ni

(2n−1)i
q=0  

p+q=k


q + i

j − q − i


V (n)
p−i,i,q+i (18)

∀n ∈ N : n ≥ 2, ∀i, j ∈ N : i ≥ 1, i ≤ j ≤ 2n+1i and k ∈ N : ni ≤ k ≤ (2n+1
− 2)i.

Proof. Both relations can be shown by inserting (13) on both sides of the relations given in Lemma 2, reordering the sums
with respect to powers of a, and comparing coefficients of the resulting finite power series in a.

Specifically, inserting (13) into (15) yields

(2n+1
−2)i

k=ni

akV (n+1)
kij =

2i
q=i

(2n−2)q
k=(n−1)q

aq+k


i
q − i


V (n)
kqj

=

(2n+1
−2)i

l=ni

al
 2i

q=i

(2n−2)q
k=(n−1)q  
q+k=l


i

q − i


V (n)
kqj


,

where in the last step we collected on the right-hand side all terms proportional to al, l ∈ [ni, (2n+1
− 2)i]. Comparing

the coefficients for terms proportional to a given power of a on both sides yields, after renaming the summation variables,
relation (17).

The correctness of relation (18) can be shown in a similar fashion. �

We note that relation (17) links all coefficients V (n+1)
kij at step (n + 1) to a sum over coefficients V (n)

qpj with q ∈ [(n −

1)i, (2n
− 2)i], p ∈ [i, 2i] and p + q = k at step n. Equivalently, relation (18) is a recursive equation in n which links all

coefficients V (n+1)
kij at step (n + 1) to a sum over coefficients V (n)

piq with p ∈ [(n − 1)i, (2n
− 2)i], q ∈ [i, 2i] and p + q = k at

step n.
Introducing for simplicity of notation

V
(n)
kj := (−1)j−1V (n)

k1j , (19)

we can now formulate
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Proposition 2. The logistic map (3) is equivalent to the explicit finite power series

xn = a
2n
j=1

2n−2
k=n−1

V
(n)
kj akxj0 (20)

for n ∈ N : n ≥ 2, with the coefficients defined recursively in n through

V
(n+1)
kj =

2n
q=1

(−1)j−q


q
j − q


V

(n)
k−q,q (21)

for all k ∈ [n, 2(n+1)
− 2] and j ∈ [1, 2n+1

] with the initial values

V
(2)
11 =


1
0

 
1
0


= 1, V

(2)
21 =


1
1

 
2

−1


= 0,

V
(2)
12 = −


1
0

 
1
1


= −1, V

(2)
22 = −


1
1

 
2
0


= −1,

V
(2)
13 =


1
0

 
1
2


= 0, V

(2)
23 =


1
1

 
2
1


= 2,

V
(2)
14 = −


1
0

 
1
3


= 0, V

(2)
24 = −


1
1

 
2
2


= −1.

Proof. Using the operator form (Proposition 1), we first observe that the first row in (9) yields the expression linear in xn,
thus

xn =

∞
j=1

(an)1jx
j
0

=

2n
j=1

(−1)j−1a
2n−2
k=n−1

V (n)
k1j a

kxj0.

Here, wemade use of the upper-triangular wedge-like structure of the operator matrix A and its powers in order to truncate
the summation over j. Inserting the definition of V

(n)
kj , Eq. (19), yields (20).

The recursive form of the coefficients V
(n)
kj can be obtained from (18) for i = 1 and using (19). Finally, the initial values

are deduced from definition (11) using i = 1. �

Due to their original definition as sums over products of binomial coefficients, Eqs. (11) and (19), the coefficients V
(n)
kj

are integers with rapidly growing absolute value for increasing n. Moreover, the number of these coefficients for a given n
is exponentially growing with n, but the recurrence (21) is sufficient to calculate all 2n+1(2n+1

− n − 1) coefficients V
(n+1)
kj

from the 2n(2n
− n) coefficients at step n. To illustrate both points, we list in Table 1 all non-zero V

(n)
kj up to n = 4 and in

Table 2 all coefficients for n = 5.

4. ‘‘Linearized’’ representation of the logistic map

Although the representation of the logistic map in Proposition 2 is explicit in terms of a finite power-series in a and
x0, the coefficients are given in form of a linear recursive relation with an exponentially growing number of terms for
increasing n. As the number of terms in this recursion depends on the step n, classical methods, such as the generating
function approach [14], cannot be employed to obtain an explicit closed-form expression for V

(n)
kj . However, using the well-

known non-trivial fixed-points of the original system

xa =
a − 1
a

(22)

for any given a ∈ (0, 4], we can represent the recursion (21) in terms of a system of linear equations. Relabeling V
(n)
kj −→

V
(n)
q with q = (j − 1)(2n

− n) + k − n + 2, q ∈ [1, 2n(2n
− n)], we have

Proposition 3 (‘‘Linearized’’ Representation). The logistic map (3) is equivalent to the explicit finite power series

xn = a
2n
j=1

2n−2
k=n−1

V
(n)
kj akxj0 (23)
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Table 1
Coefficients V

(n)
kj for n = {2, 3, 4}. The gray boxes indicated the coefficients used to calculate V

(5)
22,14 as an illustrative example of the recursive relation (21)

(see Table 2).

k j
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n = 2

1 1 −1
2 −1 2 −1

n = 3

2 1 −1
3 −1 2 −1
4 −1 2 −1
5 2 −6 6 −2
6 −1 4 −6 4 −1

n = 4

3 1 −1
4 −1 2 −1
5 −1 2 −1
6 −1 4 −7 6 −2
7 2 −7 10 −8 4 −1
8 2 −7 10 −8 4 −1
9 −6 24 −36 24 −6

10 −1 10 −36 64 −61 30 −6
11 4 −22 52 −70 60 −34 12 −2

12 −6 36 −90 120 −90 36 −6

13 4 −28 84 −140 140 −84 28 −4

14 −1 8 −28 56 −70 56 −28 8 −1

for n ∈ N : n ≥ 2, with the coefficients defined as the solution to the system of linear equations given by

C (n)
p = D(n)

pq V(n)
q , (24)

where

D(n)
pq = an+(q−1) mod (2n−n)

p


ap − 1
ap

 1
2n−n (q−1−(q−1) mod (2n−n))+1

= a
n+q−1−(2n−n)


q−1
2n−n


p


ap − 1
ap


q−1
2n−n


+1

(25)

and

C (n)
p =

ap − 1
ap

for 2n(2n
− n) different non-trivial fixed-points {ap ∈ Q, ap ∈ (0, 4]; p ∈ [1, 2n(2n

− n)]} of the logistic map.

Proof. Eqs. (24) and (25) follow straightforward by successively inserting fixed-points (22) for a chosen ap into the left-hand
and right-hand side of (23). �

Proposition 3 provides a fully linearized representation of the Verhulst logistic map on the expense of the size of the
associated system of linear equations. However, although, in principle, (24) can be explicitly solved, it is of little use
practically, especially for larger n.

5. Conclusion

In this paper we have proposed a ‘‘linearized’’ representation of the Verhulst logistic map, a second order recursive
relation exhibiting both periodic and chaotic behavior depending on its parameter a. To that end, we first made use of
the Carleman linearization and expresses the logistic map explicitly in terms of a matrix operator acting on an infinite-
dimensionalQ-valued vector space (Proposition 1). The evolution of the logisticmap is here given through successive powers
of this matrix operator acting upon an initial state vector x0.

Next, by using the explicit form of this operator, we expressed the logistic map explicitly in terms of a finite power series
in the initial state value x0 and themap’s parameter a (Proposition 2). Although the obtained expansion cannot be viewed as
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Table 2
Coefficients V

(n)
kj for n = 5. To illustrate the recursive relation (21), the gray box indicates the result of the combination of V

(4)
kj (see Table 1, gray boxes) in

order to obtain V
(5)
22,14: V

(5)
22,14 =


8
6


V

(4)
14,8 −


9
5


V

(4)
13,9 +


10
4


V

(4)
12,10 −


11
3


V

(4)
11,11 .

k j
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n = 5

4 1 −1
5 −1 2 −1
6 −1 2 −1
7 −1 4 −7 6 −2
8 −1 4 −8 10 −8 4 −1
9 4 −13 16 −10 4 −1

10 2 −13 34 −44 28 −7
11 2 −13 40 −74 88 −67 30 −6
12 −7 38 −94 140 −137 90 −40 12 −2
13 −6 34 −94 172 −226 210 −130 48 −8
14 −1 28 −134 296 −389 364 −284 188 −92 28 −4
15 10 −86 320 −669 862 −718 412 −190 84 −32 8 −1
16 4 −56 280 −749 1252 −1412 1112 −610 224 −52 8 −1
17 −22 196 −784 1832 −2738 2708 −1786 784 −232 48 −6
18 −6 88 −515 1700 −3618 5272 −5368 3780 −1760 488 −61
19 36 −322 1346 −3490 6260 −8176 7952 −5776 3080 −1150
20 4 −118 864 −3206 7400 −11694 13348 −11344 7272 −3510
21 −28 344 −1898 6228 −13570 20768 −23044 18872 −11488
22 −1 92 −874 3992 −11308 22100 −31492 33704 −27469
23 8 −212 1724 −7370 19812 −36480 48272 −47310
24 −28 420 −2806 11132 −29376 54576 −73530
25 56 −700 4088 −14784 36960 −67452
26 −70 868 −4984 17584 −42658
27 56 −732 4424 −16380
28 −28 392 −2548
29 8 −120
30 −1

k j
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

n = 5

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19 270 −30
20 1260 −330 60 −6
21 5160 −1650 340 −34
22 17100 −8094 2880 −750 132 −12
23 35088 −20036 8924 −3110 836 −168 24 −2
24 72792 −53004 28132 −10698 2860 −536 72 −6
25 92400 −96096 75768 −44660 19096 −5600 1008 −84
26 75460 −100716 103488 −82698 51436 −24640 8848 −2254 364 −28
27 41496 −76076 104104 −108108 85800 −52052 24024 −8372 2184 −420 56 −4
28 10192 −28028 56056 −84084 96096 −84084 56056 −28028 10192 −2548 392 −28
29 840 −3640 10920 −24024 40040 −51480 51480 −40040 24024 −10920 3640 −840 120 −8
30 16 −120 560 −1820 4368 −8008 11440 −12870 11440 −8008 4368 −1820 560 −120 16 −1

a closed-form solution for generic a, it provides a finite representation, smooth in both the parameter a and initial value x0.
The coefficients of this series V

(n)
kj , defined in (19) together with (11), are Z-valued numbers with rapidly growing absolute

values involving a subset of partitions of natural numbers and obeying a set of recursive algebraic relations (Lemma 3).
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Although this power series expansion is of little practical use for numerical calculations due to the exponentially growing
number of coefficients with increasing step n, it provides an insight into the nature of the original chaotic recursion. In
particular, the order of the power series grows exponentially with step n, thus demonstrating explicitly the sensitivity of
the system to both its parameter a as well as initial condition x0, the defining characteristic of chaotic systems. Moreover, for
any given order in x0 and a in the power series, the coefficients indirectly depend on n. This effectively leads to a ‘‘mixing’’ of
contribution of the various orders in the power expansion for successive steps, as illustrated in Tables 1 and 2 (gray boxes).

The final representation (Proposition 3) makes use of the fixed-points of the logistic map, leading to a formal
representation of the coefficients V

(n)
kj in terms of solutions of a system of linear equations (24). Although, in principle,

a solution to this system can be found, it is of little or no practical interest due to the size of the system. However, this
representation can be viewed as an effective ‘‘linearization’’ of the chaotic system in question, a linearization achieved at
the expense of an exponentially growing size of the linear system in V

(n)
kj .

Although the proposed representation can be viewed as an explicit form of the Verhulst logistic map, the prospects
for numerical application are challenging. Numerical evaluation of this representation will necessarily involve either
calculating recursively an exponentially growing number of coefficients, calculating the nth power of a infinite-dimensional
matrix, or solving an exponentially growing system of linear equations. However, while the ‘‘classical’’ double-precision
implementation of the logistic map can be viewed with algorithmic complexity O(n) in time and O(1) in memory, we
note that in order to avoid round-off errors in any practical implementation [7,15], arbitrary precision methods must
be employed, thus implicating exponential complexity into the problem. The representation presented here has the full
precision of an analytic expression, hence allowing to evaluate the logisticmap, in principle, to arbitrary precision.Moreover,
we hope that this representation sheds some light on the nature of chaotic systems, and potentially paves the way for a
discrete mathematics of large numbers which might be more suitable for describing nonlinear or even chaotic systems.

We note, finally, that the proposed representation of the Verhulst logistic map is applicable to general polynomial
recursions, thus potentially allowing for a formulation of such maps within a unified mathematical framework.
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