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In the hippocampus and the neocortex, the coupling between local field potential (LFP)
oscillations and the spiking of single neurons can be highly precise, across neuronal pop-
ulations and cell types. Spike phase (i.e., the spike time with respect to a reference
oscillation) is known to carry reliable information, both with phase-locking behavior and
with more complex phase relationships, such as phase precession. How this precision
is achieved by neuronal populations, whose membrane properties and total input may
be quite heterogeneous, is nevertheless unknown. In this note, we investigate a sim-
ple mechanism for learning precise LFP-to-spike coupling in feed-forward networks – the
reliable, periodic modulation of presynaptic firing rates during oscillations, coupled with
spike-timing dependent plasticity. When oscillations are within the biological range (2–
150 Hz), firing rates of the inputs change on a timescale highly relevant to spike-timing
dependent plasticity (STDP). Through analytic and computational methods, we find points
of stable phase-locking for a neuron with plastic input synapses. These points correspond
to precise phase-locking behavior in the feed-forward network.The location of these points
depends on the oscillation frequency of the inputs, the STDP time constants, and the bal-
ance of potentiation and de-potentiation in the STDP rule. For a given input oscillation, the
balance of potentiation and de-potentiation in the STDP rule is the critical parameter that
determines the phase at which an output neuron will learn to spike. These findings are
robust to changes in intrinsic post-synaptic properties. Finally, we discuss implications of
this mechanism for stable learning of spike-timing in the hippocampus.

Keywords: spike-timing dependent plasticity, oscillations, phase-locking, stable learning, stability of neuronal

plasticity, place fields

1. INTRODUCTION
In the hippocampus and the neocortex, the coupling between
local field potential (LFP) oscillations and spiking – termed spike
phase – can be highly precise (Bragin et al., 1995; Lee et al., 2005;
Siapas et al., 2005; Kayser et al., 2009). Specifically, in hippocam-
pal place field recordings, both stable phase-locking and phase
precession have been observed in various settings (O’Keefe and
Recce, 1993; Pastalkova et al., 2008), with neurons firing one or
two closely timed spikes per oscillation cycle (Pastalkova et al.,
2008; Harvey et al., 2009; Schmidt et al., 2009). This LFP/spike
phase coupling has been proposed to be a reliable method for
information transfer (Sejnowski and Paulsen, 2006), and has been
found to be robust across cell types and membrane parameters
(Somogyi and Klausberger, 2005). The mechanism, however, by
which such LFP/spike phase coupling is refined to such precision
remains largely to be determined. In this note, we have investigated
a simple mechanism for this process – the reliable, periodic modu-
lation of presynaptic firing rates during oscillations, coupled with

spike-timing dependent plasticity. We focus here on fixed point
dynamics of the system, to understand the emergence of stable
phase-locking behavior from tonic, oscillating inputs. With this
formalism in place, the possibility of an extension to phasic inputs
and dynamic LFP/spike phase relationships is straightforward.

We focused on a minimal model set up by considering a hypo-
thetical hippocampal CA1 neuron receiving noisy,oscillating input
from a large number of weak afferent inputs (see red inputs,
Figure 1A). For purposes of introduction, we further assume that
the neuron fires 1 spike per input oscillation cycle (see blue out-
put, Figure 1A). We then note that when input oscillations are
within the biological range (2–150 Hz), the firing rate of the inputs
changes on a timescale highly relevant to spike-timing dependent
plasticity (STDP). We also note that the defining feature of STDP
is highly precise temporal asymmetry. When a presynaptic spike
precedes a post-synaptic spike in time, the synapse between the two
is potentiated. This is termed a PRE-POST pairing (see Figure 1B,
right side of graph). Conversely, if a presynaptic spike follows
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FIGURE 1 | Schematic of the interplay between STDP and input

oscillations. (A) Setup of the input/output feed-forward network. Input
population rate is displayed as the red sinusoid. Output spikes are
represented in blue below the input sinusoid. (B) STDP kernel used for
analysis and computational simulations. The piecewise exponential is a
function of the temporal difference between pre- and post-synaptic spikes
(defined here as tpost − tpre). A+ and A− are the maximal changes for a
synaptic weight, as a percentage of wmax. (C) Comparison of the inputs (red
spikes) and output (blue spike) at two phases of the input oscillation cycle
(90˚ and 270˚, respectively). (D) Schematic weight change as a function of
output spike phase. Late-phase spikes receive a net potentiation and fire
earlier in subsequent cycles, while early phase spikes receive a net
de-potentiation and fire later in subsequent cycles. The fixed point for this
simple system is illustrated as a red dot.

a post-synaptic spike in time, the synapse between the two is de-
potentiated, and this is termed a POST-PRE pairing (see Figure 1B,
left side of graph).

Clearly, we expect this temporal asymmetry of STDP to create
significant effects that depend on the phase of the output spike
relative to the input oscillation. As an example, consider an output
spike occurring on the rising phase of the inputs, where the input
firing rate is increasing in time. Here, there will be more POST-
PRE pairings than PRE-POST pairings, and hence we would expect
a net de-potentiation (see Figure 1C, output spike at 90˚). Con-
versely, an output spike on the falling phase of the input oscillation
results in more PRE-POST pairings than POST-PRE pairings, and
a net potentiation (see Figure 1C, output spike at 270˚). Because
the net excitation received by the cell determines spike phase
within the 1:1 phase-locking regime (Brette and Guigon, 2003;
McLelland and Paulsen, 2009), the late-phase cells, which receive
a net potentiation, will fire at earlier phases in subsequent cycles
(see Figure 1D). Conversely, the early phase spikes that receive a
net de-potentiation will fire at later phases in subsequent cycles
(see Figure 1D). These two effects cancel each other at a given

point within the oscillation cycle, which is a zero crossing of the
schematic weight change curve in Figure 1D. At this zero point,
there is no net change in synaptic weights, and given that this
point is dynamically stable, a reliable phase-locking behavior in
the output neuron results.

Following these arguments, we expect STDP to structure the
synaptic strengths of oscillating inputs to ensure a precise LFP-to-
spike phase relationship. In fact, using analytic methods, we can
calculate the location of stable phase-locking point for a neuron
with STDP-modulated input synapses. We find that the location of
this stable point depends on the oscillation frequency and depth of
modulation of the inputs, the STDP time constants, and the ratio
of de-potentiation to potentiation in the STDP rule. Because the
effect of the STDP time constants and the STDP ratio – to change
the relative area under each section of the piecewise exponential
STDP curve – is roughly the same, in this work we consider only
changing the STDP ratio. Additionally,we show that the location of
this stable point is invariant to the properties of the post-synaptic
neuron, such as membrane resistance or the net excitation initially
applied.

2. MATERIALS AND METHODS
2.1. COMPUTATIONAL SIMULATIONS
For computational simplicity, the integrate-and-fire (IF) neuron
model is used. The equation governing the IF neuron’s membrane
potential is:

τm
dV

dt
= (VR − V ) + ge (Ee − VR) + RmI (1)

where τm (33 ms) is the membrane time constant, VR (−70 mV)
is the resting membrane potential, ge is the synaptic input vari-
able, Ee (0 mV) is the reversal potential for an excitatory synapse,
Rm (200 MOhm) is the membrane resistance for the cell, and I is
the applied DC current. Note that this equation for the IF neuron
is a CUBA (current-based) model, following Vogels and Abbott
(2005). When the membrane potential reaches the threshold value
Vth (−54 mV), a spike is generated, and the membrane potential
is reset to the resting membrane potential VR.

Input connections to the IF neuron are mediated by exponen-
tial synapses, without delays. When a presynaptic spike occurs,
the ge parameter is incremented by an amount w (ge → ge + w).
Otherwise, the ge variable follows the equation:

τe
dge

dt
= −ge (2)

where τ e (5 ms) is the decay time constant for the exponential
synapse. In these simulations, w is set to induce a subthreshold
membrane potential oscillation, and a linearly spaced range of
DC currents is then found to span the 1:1 phase-locking regime.
It is important to note that the effect described in this work is
extremely robust to the parameters of the output model neuron,
and different parameter regimes have been tested to ensure this.

The 5000 presynaptic inputs to the IF neuron were modeled as
inhomogeneous Poisson processes whose rate parameters oscillate
in time, with a peak rate of 10 Hz. The input oscillation frequency
is set to 20 Hz. To ensure that the lack of refractory period in
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the Poisson process inputs does not affect the results reported
here, additional simulations have been performed with inputs that
follow an inhomogeneous Gamma process.

The STDP rule is implemented in accordance with Song
et al. (2000), with all-to-all spike pairings. Synaptic weights are
restricted to range between 0 and wmax. For a given spike pairing
with temporal difference s, the synapse between the pre- and post-
synaptic neurons is modified according to (w → w + f(s) wmax).
Thus, the value of the STDP kernel f(s) for a given temporal dif-
ference between a pre- and post-synaptic spike determines the
percentage of wmax added to the synaptic weight (Song et al.,
2000). Because we study a plastic system with intrinsic stability
in the coupling between STDP and oscillations, it is not necessary
to include a stabilizing mechanism in the STDP rule, provided
that the learning rate A+ is a reasonable value. Thus, we focus on
an STDP rule with hard bounds (Song et al., 2000), so that we
do not introduce extra stability arising from an STDP rule with
soft bounds (van Rossum et al., 2000), though the combination of
these two mechanisms could be interesting for future work.

These simulations were performed using the Brian simula-
tor (Goodman and Brette, 2008, 2009), and a Python script to
reproduce part of Figure 4 will be made available on ModelDB
(https://senselab.med.yale.edu/modeldb/).

3. RESULTS
3.1. MATHEMATICAL ANALYSIS
We first assume an STDP rule with linear, all-to-all spike pairings.
Following previous theoretical work on STDP (Song et al., 2000),
we formulate the STDP rule as a piecewise exponential function:

f (s) =
{

A+e
−s
τ+ , s > 0

−A−e
s

τ− , s < 0
(3)

where s is defined as the difference in pre- and post-synaptic spike
times (tpost − tpre), τ+ and τ− are the STDP time constants for
potentiation and de-potentiation, A+ is the amount of potentia-
tion for an optimally potentiating PRE-POST pairing, and A− is
the same for a de-potentiating POST-PRE pairing. The ratio of
de-potentiation to potentiation (A−τ−/A+τ+) will be termed the
STDP ratio. For the case of identical time constants considered
here, we simply write (A−/A+). The value of the function f(s)
determines the percent change for a synaptic weight on a given
pairing, relative to wmax.

The rates of the presynaptic spike trains are approximated by
a continuous sinusoid (in simulations, below, we model inputs as
inhomogeneous Poisson processes):

I (t ) = r

c + 1
[c − cos (νt )] (4)

where v is the angular frequency, r is the peak firing rate, and c is a
parameter controlling the depth of modulation ( max−min

max ; Skaggs
et al., 1996) of the oscillation:

DOM = 1 −
(

c − 1

c + 1

)
(5)

The output spike train is formulated as a series of delta
functions:

S (t ) =
∑

n

δ

(
t − 2πn + ϕ

ν

)
(6)

where ϕ is the phase offset of the output spikes. Here, the phase
distribution of the output neuron is a delta function, reflect-
ing the assumption of the 1:1 phase-locking regime; however,
results will be similar for any moderately peaked, unimodal phase
distribution.

To calculate the correlation function between the input oscil-
lation and the output spike train S(t ), one considers the integral:

C (s) = νr

2π (c + 1)

∫ ∞

−∞
[c − cos (νt )] δ

(
t + s − ϕ

ν

)
dt (7)

where s is the temporal difference between pre- and post-synaptic
spikes (tpost − tpre). This integral simplifies to:

C (s) = νr

2π (c + 1)
[c − cos(ϕ − νs)] (8)

To calculate the expected weight change over time (dw/dt ) as
a function of output spike phase, we take the integral over the
correlation function between pre- and post-synaptic spike trains
multiplied by the STDP kernel:

dw

dt
= wmax

∫ ∞

−∞
f (s) C (s) ds (9)

dw

dt
= νrwmax

2π (c + 1)

[∫ ∞

0
A+e

−s
τ+ [c − cos (ϕ − νs)]ds

−
∫ 0

−∞
A−e

s
τ− [c − cos (ϕ − νs)]ds

]
(10)

dw

dt
= νrwmax

2π (c + 1)

[∫ ∞

0
cA+e

−s
τ+ ds

−
∫ ∞

0
A+e

−s
τ+ cos (ϕ − νs) ds −

∫ 0

−∞
cA−e

s
τ− ds

+
∫ 0

−∞
A−e

s
τ− τ−cos (ϕ − νs) ds

]
(11)

dw

dt
= νrwmax

2π (c + 1)

⎡
⎣ A−

1
τ 2−

+ ν2

(
cos ϕ

τ−
− νsin ϕ

)

− A+
1
τ 2+

+ ν2

(
cos ϕ

τ+
+ νsin ϕ

)
− cA−τ− + cA+τ+

⎤
⎦

(12)

From Eq. 12, one can clearly see that the location of the zeros
depends on the angular frequency (v), the STDP time constants
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(τ+ and τ−), the depth of modulation parameter c, and the
strength of potentiation and de-potentiation in the STDP rule
(A+ and A−). One can think of the A+ terms as phase advancing
and the A− terms as phase delaying, for the weight change versus
spike phase curve. The location of the zero crossing of this solu-
tion depends on the STDP ratio (A−/A+), and not on the absolute
magnitude of A+ or A−, because increasing the magnitude of these
terms while keeping the ratio constant corresponds to scaling of
the function, and thus will not change the location of the zero
crossings. Similarly, the firing rate of the inputs (r) does not affect
the location of the zeros.

The result of the calculation (dw/dt as a function of output
phase) is plotted in Figure 2A, with the parameter c set equal to 1
for full depth of modulation in the input sinusoid. The oscillation
frequency f is 20 Hz, the STDP time constants are equal and set to
20 ms, A+ is 0.01, and the STDP ratio is 1.05 (Bi and Poo, 1998;
Song et al., 2000). Note that the form of this solution matches
the behavior expected from the heuristic argument depicted in
Figures 1C,D – net potentiation for the late-phase spikes, net de-
potentiation for early phase spikes. It is also important to note that
the extrema of this analytic expression fall near 90˚ and 270˚, which
are the points at which the input firing rate is changing fastest in
time.

The analytic solution has two zero crossings – one stable, the
other unstable. As spike phase is inversely related to input current
in the 1:1 phase-locking regime for a model neuron with a positive
phase response curve (PRC), it is straightforward to see that the
early fixed point will be stable, with the later unstable. For an STDP
ratio of 1.05, the location of this stable fixed point falls just after
180˚. By changing the STDP ratio, however, stable phase-locking
can be achieved throughout a wide range of the oscillation cycle.
Thus, by increasing the STDP ratio (i.e., increasing the relative
amount of de-potentiation), the point of stable phase-locking will
occur later in the oscillation cycle; conversely, by decreasing the
STDP ratio (i.e., increasing the relative amount of potentiation),
the point of stable phase-locking will occur earlier in the oscilla-
tion cycle. The change in the shape of the analytic solution with
different values of the STDP ratio is illustrated in Figure 2B, and
the location of the fixed point as a function of the STDP ratio is
plotted in Figure 2C.

The effect of the parameter c is detailed in Figure 3, in which
the depth of modulation is varied from 100 (c = 1) to 40% (c = 4).
In Figure 3A, the expected weight change is plotted as a function
of output spike phase for an STDP ratio of 1.05, as in Figure 2A.
In Figure 3B, the location of the stable fixed point is plotted as
a function of the STDP ratio, for the three values of c. For input
sinusoids with a smaller depth of modulation, a change in the
STDP ratio has a greater effect on the location of the fixed point.
The range, however, is similar for all cases.

3.2. COMPUTATIONAL SIMULATIONS
To corroborate the analytic results, which approximate the input
spike trains as a continuous sinusoid, with biophysically realistic
input and output spiking processes, we performed computational
simulations of an integrate-and-fire (IF) neuron and oscillating
inhomogeneous Poisson process inputs. In these simulations, the
IF neuron receives 5000 periodically modulated Poisson process

FIGURE 2 | Analytic solution. (A) The analytic solution for weight change
over time as a function of output spike phase. The STDP ratio (A−/A+) is 1.05
for this curve. The two fixed points of the weight change curve are
plotted – the stable fixed point in red, and the unstable fixed point in green.
(B) The analytic solution for weight change over time is plotted for several
values of the STDP ratio, to demonstrate the effect of increasing the ratio
of de-potentiation to potentiation on the output model neuron. Compare
these curves to the results of the computational simulations in
Figures 4B–D. (C) The point of stable phase-locking is plotted as a function
of STDP ratio, demonstrating the shift of the stable phase point to later
phases with increasing amounts of de-potentiation.

spike inputs (see red inputs, Figure 1A). The number of inputs
is chosen to be biologically realistic (Amaral et al., 1990), but
also computationally feasible. Inputs are connected to the IF neu-
ron by exponential, current-based synapses with a 5-ms decay
time constant. Notably, as the analytic solution demonstrates, our
STDP-based phase coupling mechanism is robust to the output
neuron model. The only requirement is that the output model
neuron has a positive PRC; thus, the IF neuron was chosen for
computational simplicity.

In the control simulation without STDP (Figure 4A), a range
of DC inputs are applied to the output neuron, so that the output
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FIGURE 3 |The effect of depth of modulation on analytic solution. (A)

Expected weight change as a function of output spike phase, for a depth of
modulation of the inputs ranging from 100 (c = 1) to 40% (c = 4) and an
STDP ratio of 1.05. It is important to note that for this STDP ratio, the 40%
depth of modulation (c = 4) does not have a zero crossing. (B) The location
of the stable fixed point is plotted for the depth of modulation cases
presented in (A), for all values of the STDP ratio that the function has a zero
crossing.

will phase-lock to a range of phases of the input oscillation cycle.
The mean phase of the output spike as a function of oscillation
cycle over 50 trials for each DC input case is plotted in Figure 4A,
with different colors for each DC input. It is important to note
that after 1 s of simulation, stable phase-locking is achieved, and
the initial transient has been integrated out, so that each neuron
has reached an individual stable phase-locking point. This set of
neurons with the various pre-STDP steady-state phase points can
be interpreted as a population of cells, each with slightly differ-
ent membrane parameters, such as membrane resistance or mean
synaptic input.

The synapses connecting the oscillating inputs to the output
model neuron express STDP with linear, all-to-all spike pairings.
In these simulations, all synapses are initialized to the same weight.
For the first 2 s of the simulation, STDP is turned off, during

the initial 1 s transient. In this way, each neuron starts out at its
individual stable phase. When STDP is turned on, our putative
population of output neurons quickly converges to the unique
stable spike phase predicted by the analytic solution in Figure 2B
(prediction marked by black arrows, Figures 4B–D). The simu-
lations in Figures 4B–D are done with STDP ratios increasingly
weighted toward de-potentiation (1.05, 1.50, and 1.70), and corre-
spond to the ratios for the analytic solution plotted in Figure 2B.
For an STDP ratio of 1.05, the analytic solution predicts sta-
ble phase-locking at 185˚; for STDP ratios of 1.50 and 1.70,
stable phase-locking is predicted at 220˚ and 235˚, respectively.
Thus, by changing the STDP ratio, phase-locking can be achieved
throughout the oscillation cycle.

To verify that a population of neurons will converge from out-
side the 1:1 phase-locking regime to our theoretically predicted
stable fixed phase point, we made an additional test with an 800-
neuron population receiving input from 10,000 excitatory cells.
Each neuron is connected to an input with a 10% connection
probability, giving an average of 1,000 input synapses per output
neuron. The inputs oscillate, as above, but in this simulation, no
extra DC input is added to the neurons. The simulation is run as
follows. First, the simulation runs for 5 s, to integrate out any tran-
sients. Second, the simulation runs for an additional 5 s, to record
the phase distribution before STDP (blue distribution, Figure 5).
Third, STDP is applied during 30 s of simulation. Fourth, the
simulation runs for a final 5 s, to record the converged phase dis-
tribution after STDP (green distribution, Figure 5). In comparing
the recorded mean phase after STDP with the theoretically pre-
dicted value (cf. small vertical lines, Figure 5), we observe that the
output phase distribution leaves the two spikes per cycle phase-
locking regime and converges to within 1˚ of the theoretical value
after 30 s of plasticity. The weight distribution of the inputs is
depicted in the inset of Figure 5; as shown here, it is important
that the learning rate (A+) is relatively small, so that the weight
distribution does not saturate to the hard bounds. The stability
of the weight and phase distributions has been checked in longer
simulations. Additionally, we have checked with simulations of
neurons initially firing less than 1 spike per cycle that the mean of
the phase distribution also converges to the theoretically predicted
stable fixed point (data not shown).

4. DISCUSSION
In this note, we have demonstrated through both analysis and
simulation that the combination of STDP, which is classically
observed in the hippocampus and neocortex (Bliss and Lomo,
1973; Markram et al., 1997; Bi and Poo, 1998), and neuronal
ensemble oscillations, which are also classically observed in the
hippocampus and neocortex (Gray and Singer, 1989; Buzsaki,
2011), allows a population of neurons with heterogeneous mem-
brane parameters to phase-lock to a specific point in an input
oscillation cycle, invariant to differences in initial excitation. While
precise phase-locking behavior is observed throughout the brain
(Bragin et al., 1995; Lee et al., 2005; Siapas et al., 2005; Kayser
et al., 2009), the mechanisms leading to this robust and invari-
ant LFP-spike coupling are not well understood and in modeling
this phenomenon, the precision of phase-locking observed often
requires careful adjustment of parameters for the model neurons
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FIGURE 4 | Simulations with STDP and input oscillations. (A) Control
simulation. The phase of every spike in the simulation is plotted in each panel.
The IF neuron receives a range of DC inputs, with STDP turned off, to
demonstrate the phase-locking paradigm and its initial transient. (B–D) STDP
simulations. Legend text indicates STDP ratio in each panel. STDP is turned
off for the first 2 s of simulation, to integrate out the initial transient. With

STDP turned on, the population of model output neurons quickly learns to
phase-lock to a point within the input oscillation cycle. With increased
de-potentiation relative to potentiation in the STDP rule, the population of
model output neurons locks to later points within the input oscillation cycle.
Black arrows mark predictions from the analytic solution. All data points
represent an average over 50 trials, and error bars represent SEM.

FIGURE 5 | Verification of stability outside the 1:1 phase-locking

regime. The phase distribution for a population of 800 excitatory cells is
depicted, before and after application of STDP. Initially, the input strength
induces two spikes per cycle in the excitatory population. After 30 s of
plasticity, however, the phase distribution converges to the 1:1
phase-locking regime, with a mean phase (marked with blue line) within 1˚
of the theoretically predicted value (marked with red line). The Gaussian
weight distribution produced by the STDP rule is depicted in the inset.

and applied currents. We have shown that these parameters can be
learned by individual neurons under quite general conditions in
the presence of STDP and neuronal oscillations. A similar mecha-
nism has been observed experimentally in the olfactory system of
the locust, where STDP synchronizes the response of downstream
neurons to the peak of an upstream input oscillation (Cassenaer
and Laurent, 2007), and it is likely that this mechanism affects
hippocampal circuits as well. Additionally, it is important to note
that the rate at which the population of model neurons converges
to its fixed point depends on the magnitude of A+ and A−, but
that the location of this point depends only on the parameters dis-
cussed above (input oscillation frequency, STDP time constants,
and the STDP ratio). The point of stable phase-locking is quite
insensitive to the magnitude of A+ and A− – that is, learning in
this system can happen either very quickly or very slowly, with the
system converging to the same point. This is an interesting point
in the context of hippocampal place field dynamics, during which
NMDA receptor-dependent changes in neuronal firing patterns
take place quite fast, within as few as five laps on a linear track
(Mehta et al., 2002). The mechanism of STDP and oscillations
explored here satisfies this fast yet stable learning observed during
in vivo place field dynamics.

This note complements and extends the work of several pre-
vious studies in stability of single neurons with plastic synapses
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following an STDP rule (Song et al., 2000; van Rossum et al.,
2000; Gütig et al., 2003; Babadi and Abbott, 2010; Gilson et al.,
2010). Most notably, we extend here the concept of intrinsic sta-
bility within input/output bursts (Song et al., 2000) to the case
of many weak tonic oscillatory inputs, and we relate the neuronal
and synaptic parameters to the fixed phase at which the neuron
will learn to spike. In this way, we provide an additional special
case (i.e., oscillating inputs) under which stability is achieved with
the standard STDP rule. This special case is orthogonal to studies
of plasticity rules modified from the piecewise exponential form
originally suggested for STDP in Bi and Poo (1998) [van Rossum
et al. (2000), Gütig et al. (2003), Babadi and Abbott (2010)], and
future work could complement this study by investigating these
modified rules in the context of oscillating synaptic inputs, as
studied here.

To produce the results outlined in this work, several gen-
eral assumptions must hold. First, for modeling the feed-forward
structures such as the hippocampal subfield CA1, we focus on
the 1:1 phase-locking regime. This regime is a good approxi-
mation to the behavior of hippocampal pyramidal neurons in
awake, behaving animals during spatial navigation, which fire
single spikes or a closely timed 2–3 spike burst each oscillation
cycle (e.g., Figure 4A of Harvey et al., 2009; Schmidt et al., 2009).
The main simplification here is that we treat these complex spike
events as single events for the sake of the STDP rule. Second, the
input synapses are assumed to remain in the weak limit, so that
many presynaptic cells contribute to driving the output cell to
action potential threshold. This is also a good approximation for
hippocampal pyramidal neurons, when considering the number
of afferent inputs to these neurons and their mean firing rates
(Amaral et al., 1990; Ahmed and Mehta, 2009). Third, we have
assumed that individual spike pairings sum linearly in the STDP

rule. This has been shown to be a valid approximation for hip-
pocampal STDP (Wang et al., 2005), even though summation of
STDP pairings may not be linear in some areas of the neocortex
(Froemke and Dan, 2002; Froemke et al., 2006). Additionally, we
have neglected any voltage dependence of the post-synaptic neu-
ron on the summation of STDP pairings (Clopath et al., 2010),
which could be an additional factor in the interaction of STDP and
oscillations. Fourth, we have focused on fixed points occurring in
the late half of the oscillation cycle, in light of the fact that most
cell classes in the hippocampus have phase distributions peaked
after 180˚ (Somogyi and Klausberger, 2005). In principle, compu-
tational simulations could also inspect phase-locking in the early
half of the oscillation cycle. Lastly, it is important to note that Eq.
12 quantifies the average, or expected weight change of an input
synapse as a function of output spike phase. With relatively small
individual weight changes, however, this expected weight change
approximates the actual weight change on any single trial quite
well.

In summary, we have considered a very simple architecture –
oscillating, feed-forward input synapsing onto a single output
neuron – and developed a mechanistic view of spike phase in the
presence of STDP. This view provides quantitative results on spike
phase during hippocampal learning, and furthermore, this same
mechanism can generalize to more complex network architectures
and input/output phase relationships.
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