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In estimating the frequency spectrum of real-world time series data, we
must violate the assumption of infinite-length, orthogonal components
in the Fourier basis. While it is widely known that care must be taken
with discretely sampled data to avoid aliasing of high frequencies, less
attention is given to the influence of low frequencies with period below
the sampling time window. Here, we derive an analytic expression for
the side-lobe attenuation of signal components in the frequency domain
representation. This expression allows us to detail the influence of in-
dividual frequency components throughout the spectrum. The first con-
sequence is that the presence of low-frequency components introduces
a 1/f* component across the power spectrum, with a scaling exponent of
a ~ —2.This scaling artifact could be composed of diffuse low-frequency
components, which can render it difficult to detect a priori. Further, treat-
ment of the signal with standard digital signal processing techniques
cannot easily remove this scaling component. While several theoretical
models have been introduced to explain the ubiquitous 1/f* scaling com-
ponent in neuroscientific data, we conjecture here that some experimental
observations could be the result of such data analysis procedures.

1 Introduction

The Fourier transform G(Q2) of a function g(t) has many applications in
physics and engineering, and each is referred to as frequency domain and
time-domain representation, respectively (Fourier, 1822). The power spec-
tral density (PSD) is a powerful tool in the analysis of signals and dis-
tinguishing systems. However, the main assumption of a Fourier series
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decomposition, infinitely long data, is violated, since all experimental data
are inherently of finite length.

The discrete Fourier transform (DFT) is used to analyze finite-length data
(Cooley, Lewis, & Welch, 1969),

N-1
Xp= ) xe 2N, (1.1)

and is related to the continuous-time Fourier transform (Fourier, 1822;
Titchmarsh, 1948),

_ / " e, (12)

by considering a discrete time function where g(t) is replaced by x,, = g(tx)
with k e N and 6t = 7 where the sampling frequency is f;. The sampling
theorem of Nyquist (1928) and Kiipfmdiller (1928) specifies that the sam-
pling rate must be greater than twice the highest-frequency content of the
signal. In contrast, however, the effect of low-frequency content has not
been studied extensively.

Here, we investigate the case where spectral content exists below the
low-frequency bound of the DFT. We find that the presence of these low
frequencies has a profound effect on the frequency spectrum. Considering
that one period (27) is necessar?\lr for the lowest-frequency content during
the sampling time window T = 7 where N; is the number of samples, then
the relevant cutoff frequency f; is

(1.3)

which is exactly the DFT bin length (Harris, 1978). In his classic 1978 paper,
Harris introduced spectral leakage and the effect of different windowing
methods to suppress power in the side lobes. Since then, several papers
have been published on the design of windows with less side lobe power
(see, e.g., Nuttall, 1981, among others). Here an analytical form of these
spectral components and the envelope of the DFT spectrum are presented
and used to explain some scaling artifacts.

The significant effect of frequency content below the cutoff frequency f.
is illustrated in Figure 1. A signal with a noise-free, 10 Hz oscillating com-
ponent, observed over a time window of 100 seconds, produces a given
spectral estimate (black); however, when an additional, sub-cutoff test fre-
quency (see equation 1.3) component is added to the signal, a roughly linear
feature appears across the frequency spectrum in log-log coordinates (see
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Figure 1: Effect of sub-cutoff frequency content (a) and linear drift (b) on spec-
tral scaling. The fast Fourier transform (FFT) magnitude spectral estimate for a
signal S; = sin(2x f1t), where f; = 10 Hz, f, = 1000 Hz, and T = 100 s, is given
in black. (a) An additional signal S, = sin(27 f»t) (f, = 0.009 Hz), which is an
arbitrary frequency smaller than the cutoff f. (in equation 1.3), is added to S;.
(b) A linear drift S; = %t is added to S;. In both cases, the resulting spectral
estimate is shown in magenta.

Figure 1a). This feature is surprising in a noise-free signal. Further, when a
linear drift (which can be seen as equivalent to an extremely low-frequency
component) is added to the signal, a similar linear feature appears (see
Figure 1b). While the observations of these effects have been noted previ-
ously in the neuroscience literature (Mitra & Bokil, 2007), we present here
a systematic analytical derivation of this effect as a result of finite window
length. It is important to note that in the numerical spectral estimates, as in
the analytic results to follow, we work with the modulus (magnitude) of the
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Fourier transform. In the literature (Ward & Greenwood, 2007), 1/f noise is
referred to as the spectral density S(f) of a stochastic process, which has the
form S(f) oc 1/ f«.

We have investigated this low-frequency-induced artifact present in
spectral analysis of finite-length signals. This study demonstrates that al-
though the effect becomes dominant for test frequencies below f. (see equa-
tion 1.3), small artifacts are present throughout the frequency spectrum for
all test frequencies. Finally, we demonstrate that these effects are robust to
removal with standard filtering techniques (see the appendix). While theo-
retical models have been proposed to explain the ubiquitous 1/ f* scaling
observed in neuroscientific data, for example as a result of neuronal shot
noise (Milstein, Mormann, Fried, & Koch, 2009), we propose that the effect
studied here is important for the analysis of neuroscientific data and that
care should be taken with interpreting power spectral estimates.

In summary, this letter has three main points:

1. Fourier analysis is based on the assumption of infinite window
length. This assumption is always necessarily violated in real-world
data analysis.

2. Consequences of this violation include nonlinearities resulting from
multiple frequencies in the data, spectral leakage, and scaling arti-
facts induced by low-frequency components in the data (below f).

3. The interplay of frequencies and phase is often neglected in the anal-
ysis of real-world data.

The letter is organized as follows. In section 2, the analytical forms of
the continuous-time Fourier transform G(2) for infinite and finite windows
are derived. From the finite-length form, we derive the analytical form
of the spectrum and the analytical forms of its piecewise envelopes. We
make the connection to spectral leakage in section 2.1.1, the observed low-
frequency induced scaling artifact in section 2.3, and nonlinearities in the
spectrum when dealing with multiple frequencies in the data in section
2.1.3. We perform the analyses following Goertzel (1958) and an alternative
approach. In section 2.3, we present an analytical derivation of the 1/f scal-
ing artifact and briefly address the interplay between frequency and phase,
which will be the subject of future research. Section 3 presents conclud-
ing remarks and provides perspectives on how this spectral scaling artifact
could be an important consideration for both theoreticians and experimen-
talists using spectral analysis. The appendix presents rigorous numerical
evaluations of the robustness of this artifact to common signal processing
techniques, such as windowing and prefiltering.

2 Analytical Results

Previously, we introduced a mathematical approach to time-domain spec-
tral analysis (Lainscsek & Sejnowski, 2015), which is a generalization of the
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Goertzel algorithm (Goertzel, 1958), a well-known technique for efficient
numerical evaluation of individual terms in the DFT.

2.1 Goertzel Algorithm. The Goertzel algorithm uses equation 1.2 in
the one-sided form,

G(Q)oo = [w g(t)e ™ dt

=2 /oog(t) (cos(2t) — isin(2t))dt, (2.1)
0

to evaluate the signal spectrum at given individual frequencies . Starting
from a signal g(t), in the standard Goertzel approach,

G(Q)oo = |g(Q)oo| (2.2)

is then computed from the real part R = <g(t) cos(Qt)) and the imaginary

part 7 = (g(t) sin(Qt)) using the expectation operator (x)r = 1 foT * dt and
limT — oo by

G(Q)e = 2v/R2 + 12. 2.3)

2.1.1 Single-frequency signal. For a single-frequency signal g(t) =
Acos(wt + ¢) with infinitely dense sampling, the real part Rr =
(g(t)cos(Qt))r and the imaginary part Zr = (g(t)sin(Qt)), for a finite-
length window are then

—w A in(T T
Ry =0 A (COS((p) n sin(Tw) cos(Tw + (p)>’
2 Tw

9w g (_ sin(p) + sin(Tw) sin(Tw + go)) ,

T (2.4)

where the spectral leakage terms are

Ry L T(QZA—aﬂ) (2sin(T2) cos(Tw + )
+ w(sin(¢)(1 — cos(Tw) cos(TR)) — cos(¢) sin(Tw) cos(T2))),
Ir = —#(a) sin(T2) sin(Tw + @)

T (22— w?)
+ Q(cos(p)(cos(Tw) cos(T2) — 1) — sin(p) sin(Tw) cos(TX2))).
(2.5)
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For imT — oo, this is

G(Q)e 22V R2+ T2 = A, (2.6)

but for finite window length, there are additional error terms,

—w A
G(Q)r = T ( T?w? — Twsin (2¢) + Twsin (2 (Tw + ¢))
1 1\
—3 cos(2Tw) + E) , (2.7)

with the expressions for Rt and Zr in equations 2.4. The expressions for
Q # w using equations 2.5 are

2A

m((ﬂz — w?)(cos(Tw) — cos(T)) cos(2p + Tw)

G(Q)r =

+ (22 + 0?)(1 — cos(Tw) cos(T))
— 20 sin(Tw) sin(TQ))Y2. (2.8)

2.1.2 Time Shift Theorem for a Single Frequency. Concerning the Fourier
transform of a single-frequency signal with a time shift , it is well known
(see, e.g., Erdélyi, 1954) that

/ g(t + t)e " dt Hé:f/ 2P

=Py f g(t)e ™ dt. (2.9)

Thus, for an arbitrary time shift, only a phase shift is added to the spectral
representation. The substitution f — ¢ in equation 2.9 is possible only for
infinitely long data. This theorem therefore holds only in the limit of infi-
nite window length; however, with finite windows, the effect of a time shift
on the error terms (see equations 2.7) must be considered. For a single fre-
quency signal g(t) = A cos(wt + ¢) and finite window length, equation 2.9
changes to

T
G(Q)r = f gt + T)e ¥ dt
0

T
=/ Acos(o(t + 1) + ¢) (cos(2t) — isin(Q2t))dt
0

Rr = cos(wt) (cos(wt + ¢) cos(2t)) — sin(wt) (sin(wt + ¢) cos(2t))
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Ir = cos(wt) (cos(wt + @) sin(Q2t)) — sin(wt) (sin(wt + ¢) sin(2t))

G(Q)r =2,/R3 + 12
_ A, 1 :
=T, (T "+ 7 Twsin2(tw + ¢))
+ Twsin(w(t +T) + ¢)) — % cos(2Ta))) E. (2.10)

2.1.3 Multiple Frequency Signal. For a signal g(t) = ", Ay cos(wxt + @)
with N frequencies and N phases, the Fourier transform G(2)r for finite-
length windows can be composed of the real and imaginary parts,

N
Rr = <ZAkcos(wkt+<pk)cos(Qt)>
T

k=1

Q=wy,

=" (A cos(wpt + @) cos(Qt)),

N
+< Z Akcos(wkt+§0k)C05(Qt)>
T

k=1;k#m

N
= RQ4u+ ) REQ5)
k=1;k#m

N
Ir = <2Akcos(a)kt+<ﬂk)sin(9t)>
T

k=1
N
IR+ Y. IQ25) (2.11)
k=1;k#m

where R(2.4, 2.5) and Z(2.4, 2.5) are the expressions from equations 2.4 and
2.5, respectively. The Fourier transform

G(Q)r =2,/R2 + 12 (2.12)

will then have cross-terms resulting from the square of the expressions in
equation 2.11, which is a nonlinear function of the N frequencies and N
phases. This means that in addition to the linear superposition of Fourier
transformations of the N signal components, there are error terms that re-
sult from nonlinear spectral leakage in the case of finite window length.
Finally, as already noted, these nonlinear error terms must be considered
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in the context of the time-shift theorem in the case of multiple frequency
signals.

2.2 Alternative Representation. If we replace the two real and imagi-
nary probe signals in the above representation with a single probe signal
with frequency and phase P = cos(R2t + ¢), we get

G(R)os =2 max (g®)P) =2 (g(t) cos(Rt + Pmax)),, (2.13)

where ¢may is the value of the probing phase that maximizes (g(t) P)_ (Lain-
scsek & Sejnowski, 2015).

2.2.1 Single Frequency. For a single frequency, this calculation then yields

G(Q)oe =2(8(1) P), = {Z} for Z i z (2.14)

which is the time domain spectrum for signals of infinite length. General-
izing this next to finite-length signals with a single frequency o,

Q=0

G(Q)r = mq?x <A cos(¢p — @) +

A sin(Tw) cos(Tw + ¢ + ¢)
Tw >

¢;§0 A

Asin(Tw) cos(Tw + 2¢)
_|._
Tw

920 4 (1 n sinwT)
2wT

= A(1+sinc(4T f)) (2.15a)

G(Q)r oz ﬁ(w sin(p) cos(¢) — 2 cos(¢) sin(¢)

+ Qcos(p+ Tw) sin(¢p +TR) —w cos(¢p +TR) sin(¢ + Tw)).
(2.15b)

Again, it is apparent that each individual frequency has an effect through-
out the spectrum, as shown above and in Figure 2. The red lines in Fig-
ure 2 depict all possible phases ¢ in the probe signal P. Although these
two approaches are not completely equivalent, the functional representa-
tion contained in equations 2.15 is much simpler. Figure 3 illustrates the
error made in both approaches and the small but nonnegligible differ-
ence between them. Light blue lines indicate the error made at each phase
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Figure 2: Analytical form of G()r for test frequencies F = 5= with several ran-
dom phases ¢ and ¢ (red; see equation 2.15b) and derived envelopes (see equa-
tions 2.16). The width of E, and Ej together is exactly the DFT bin length f. and
is centered in the main lobe.

f =10 Hz; f, = 1000 Hz; 2 = cos(wt + ¢)
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Figure 3: Error made for a single sinusoidal signal with a frequency of 10 Hz
and sampling rate of 1000 Hz in the alternative representation (top) and for the
Goertzel algorithm (middle). The difference (bottom) between both approaches,
in percent of the signal amplitude, is small but nonvanishing. The light blue
lines are the errors made for the different phases (2 = w; ¢ = ¢ # 0) in equation
2.15a, and the dark blue lines represent the sinc function (2 = w; ¢ = ¢ = 0).
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relative to the window and dark blue is the sinc function. Importantly, the
error made in both approaches is very similar at all window lengths.

2.2.2 Envelopes. Outside the frequency Q = w, the envelope of G(Q2)r
with test frequency € is

4A

E1=5(j)
fe

for F<f— 5 (2.16a)
B 23 (o (T2 in (T2) — woin (T2 cos (L
2= 5 cos > sin 5 w sin > cos 5

fe

for f— 5 <F<f, (2.16b)
b2 3 (oo (T2 s (T2) - roin (T2 ) cos (L
3=  Cos 7 sin 5 sin > cos 5

fe
for f<F<f+ > (2.16¢)
4A

E4——BQ

for sz—i—%, (2.16d)

where D = T(w? — Q%) and F = %. The main lobe spans the range between
f — feand f + f. and is surrounded by the side lobes (see Figure 2). The
lengths of E; and Ej are each half the DFT bin width. Equations 2.16 hold
only if T is an integer multiple n of % If T # %, the side lobes are not
equidistant and the envelopes cannot be expressed in the form of equations
2.16. It is not possible to express the envelope in general if there are multi-
ple frequencies in the signal. Then a linear superposition of the envelopes
of equations 2.16 for each of the frequencies in the signal will lie above
the spectrum. Further analytical investigations will be the subject of future
research.

2.3 Analytical Derivation of the 1/f Scaling Artifact For a frequency
f lower than f, only the term E4 contributes (for F = —ﬂ > f+5 Ly,

f<
2A1 1 = 2.17)

‘T aTF1_ L xTF
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Figure 4: Effect of the phase of the low-frequency component (f; = 1000 Hz,
f=0.009Hz,and T = % s) relative to the finite-length window. G(Q2)r is shown
for phases between 0 and 2r as separate linear plots (top) and as polar plots
where the logarithm of the frequency is plotted along the radius (bottom). The
analytical form in equation 2.15b is shown on the left side and the numerical
results for the Goertzel algorithm on the right side. The slope is —1 nearly ev-
erywhere. The slope is —2 only for ¢ = %‘l), n € N. The dashed black lines
(top plots) are the analytical form in equations 2.16.

The magnitude of the spectrum then scales as 1/F with a small correction
term. It is important to note again that beause we are working in mag-
nitude of the Fourier transform, the power spectrum will then scale with
1/F2.

As a direct consequence of equations 2.15b, 2.16b, and 2.16c¢ for two fre-
quencies greater than f., where A f is smaller than f, the signal phases
(both absolute and relative) determine their discriminability in the result-
ing spectrum. This effect will be the subject of future study.

We can see in equation 2.15b that there is a phase dependence that re-
sults in slopes ranging between —1 and —2. The slope is —2 only in the case

= w n € N. In Figure 4, we tested the numerical Goertzel algorithm
against the analytical expression in equation 2.15b and found a nearly per-
fect fit.
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3 Conclusion

We have presented analytical derivations illustrating the nonlinear effects
present in spectral analysis. In the appendix, we support our results with
numerical simulations. These aspects are a direct consequence of violating
the assumption of infinite-length sinusoidal components in Fourier anal-
ysis. These nonlinear effects result from couplings of the spectral leakage
contributions from individual frequency components and can become pro-
found in certain instances. We applied the theoretical results to the case
of low-frequency components in a noise-free signal, where a specific low-
frequency-induced spectral scaling artifact can occur.
To summarize, following are the main points explored in this work:

+ Consequences of analyzing finite-length signals in Fourier analysis

Nonlinearities resulting from multiple frequencies in the data.
For real-world, finite-length data, the limit of T — oo is not
realized, which causes nonlinear interactions between single-
frequency components.

Spectral leakage. We analyzed the spectral leakage effects intro-
duced by Harris (1978) in an analytical manner.

Scaling artifacts induced by sub-cutoff frequencies (below f).
Scaling artifacts can be caused by special spectral leakage
effects.

* Interplay of frequencies and phase is often neglected in analysis of
real-world data. Due to nonlinearities caused by finite-length win-
dows, frequencies and phases are interconnected in a nonlinear way.
Consequences of this are the subject of ongoing research.

Recognition of the possibility of this artifact and nonlinear interconnec-
tions between phase and frequency is important for neuroscientists, physi-
cists, and engineers who use spectral analysis in their work. As illustrated
in the appendix, this artifact is robust to removal through common linear
filtering and detrending techniques, and thus may be an important prac-
tical consideration for analysis of experimental data. More robust filtering
approaches and further consequences of nonlinearities in the signal pro-
cessing technique, will be the subject of future work.

Appendix A: Numerical Robustness Tests

We numerically tested the robustness of this spectral scaling artifact un-
der various common spectral analysis situations. We began with the de-
pendence of the spectral scaling artifact on the amplitude of the added
sub-cutoff frequency component. Starting with a sinusoid of unit ampli-
tude, we added low-frequency components with amplitudes between 0 and
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Figure 5: Effect of the amplitude of the low-frequency component on the spec-
tral scaling. FFT estimates of the frequency spectrum for varying amplitude of
the 0.009 Hz (0.9x f.) sub-cutoff frequency component. Amplitude of the sub-
cutoff frequency added to the original 10 Hz sinusoid ranges from 0 (dark red)
to 1 (blue); the original sinusoid is of unit amplitude. Note that the specific scal-
ing component analyzed in the main text appears immediately on the addition
of the low-frequency component at all amplitudes.

1; we show the resulting frequency spectra in Figure 5. The scaling of the
resulting spectra is invariant to the amplitude of the sub-cutoff component,
consistent with the slope in equation 2.17. It is important to note that we
verified the robustness of this spectral scaling bias using many different
spectral estimation techniques (Welch power spectral estimate, Goertzel al-
gorithm, Hann and Hamming windows, multitaper spectral estimate; data
not shown but provided as online supplementary code).

Further, these spectral artifacts are difficult to remove using standard
filtering techniques. We tested the efficacy of both finite impulse response
(FIR) and infinite impulse response (IIR) high-pass digital filters in recover-
ing the original signal spectrum. Filtering was carried out in the forward
direction only. Linear-phase FIR filters ranging from 100th to 5000th or-
der were constructed using a Hamming window (cf. Matlab fir1). The
numerical stability of the FIR approach allows construction of a filter at
high order, which is necessary to achieve sufficient magnitude response
in the low-frequency stopband. Butterworth IIR filters (cf. Matlab butter)
were constructed at fourth order, displaying a slightly stronger magni-
tude response. In neither case were the filters generally able to recover the
original signal spectrum above the cutoff frequency (0.5 Hz); the spectral
scaling component remained (see Figure 6 and supplementary Matlab code
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Figure 6: Effect of high-pass prefiltering on low-frequency intrusions. As in Fig-
ure 1, the FFT spectral estimates are given for an example 10 Hz sinusoid (black)
and for the original signal with an added 0.009 Hz low-frequency component
with random phase angle (magenta). A version of this composite signal filtered
with a high-pass, 5000th-order, linear-phase FIR filter is plotted in turquoise.

for replication). The high-order FIR filters were successful, however, in one
specific case. Interestingly, the success of the FIR filtering operation de-
pends critically on the phase angle of the low-frequency component, and
in a specific manner: the original signal spectrum is recovered only if the
imaginary part of the Fourier transform of the low-frequency component
is nearly zero, that is, if the phase angle of the low-frequency component is
zero or 7 (see Figure 7). Such a nontrivial dependence of the filtering oper-
ation on the phase of signal components is hitherto unknown, to the best of
our knowledge, and will be the subject of future study.

Finally, we inspected preprocessing by signal differencing, a common
digital signal processing technique, to further test the robustness of the ob-
served scaling artifact (see Figure 8). While signal differencing does remove
much of the scaling artifact, a scaling component remains apparent in the
resulting spectrum (see Figure 8 from 10 to 500 Hz). We further tested nu-
merical detrending of signals. In Figure 9 we added frequency noise and
in Figure 10 we added frequency and amplitude noise. This, along with
the filtering tests presented above, demonstrates the difficulty in remov-
ing spectral artifacts resulting from signals outside the DFT cutoff and for
combinations of signals more generally. Thus, while signal differencing is
indeed useful for detrending experimental data in general, a signal prepro-
cessed in these ways may still contain the spectral scaling artifacts observed
here.
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Figure 7: Dependence of filtering on the phase of the sub-cutoff frequency com-
ponent. The magnitude of slope for the spectral scaling is plotted as a polar
function of the low-frequency phase for the original signal with an added 0.009
Hz low-frequency component (magenta) and for the signal filtered as in Fig-
ure 6 (turquoise). For this calculation, mean magnitude spectra were obtained
by averaging over 100 trials at each phase using the Welch power spectral esti-
mate, and fits were conducted on the smoothed results. The unit circle is plot-
ted in black. Slope is determined by linear fit in log-log coordinates between
0.7 and 3 Hz, where the spectral scaling artifact is most prominent in the fil-
tered version (see Figure 6). While the slope remains near —1 for the unfiltered
signal, the slope of the filtered signal returns to zero only for angles close to
7(2n—1)
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Figure 8: Test with signal differencing. FFT spectral estimates for an example
10 Hz sinusoid (black), the same signal with added low-frequency component
(blue), and this second signal preprocessed by differencing (red). The observed
spectral scaling artifact remains in the differenced signal, illustrating the diffi-
culty in removing this artifact through standard signal processing techniques.
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Figure 9: Test with numerical detrending. (Left) A 10 Hz sinusoid with an
added noisy oscillation (f(t) = Acos(wt + n(t)), where n(t) represents fre-
quency noise). The original signal is plotted in the top panel, and the detrended
version is plotted at bottom. (Right) The spectra for the 10 Hz sinusoid (black),
10 Hz with added noisy, low-frequency component (magenta), and the de-
trended version of the composite signal (blue).
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Figure 10: Test with numerical detrending under the influence of added white
noise (SNR = 10 dB). (Left) A 10 Hz sinusoid with an added noisy oscilla-
tion (f(t) = (A + ni(t)) cos(wt + na(t)), where 5 (t) and n,(t) represent ampli-
tude and frequency noise, respectively). The original signal is plotted in the top
panel, and the detrended version is plotted at bottom. (Right) The spectra for
the 10 Hz sinusoid (black), 10 Hz with added noisy, low-frequency component
(magenta), and the detrended version of the composite signal (blue).
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