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The correlation method from brain imaging has been used to estimate
functional connectivity in the human brain. However, brain regions
might show very high correlation even when the two regions are not
directly connected due to the strong interaction of the two regions with
common input from a third region. One previously proposed solution
to this problem is to use a sparse regularized inverse covariance matrix
or precision matrix (SRPM) assuming that the connectivity structure is
sparse. This method yields partial correlations to measure strong direct
interactions between pairs of regions while simultaneously removing
the influence of the rest of the regions, thus identifying regions that are
conditionally independent. To test our methods, we first demonstrated
conditions under which the SRPM method could indeed find the true
physical connection between a pair of nodes for a spring-mass example
and an RC circuit example. The recovery of the connectivity structure
using the SRPM method can be explained by energy models using the
Boltzmann distribution. We then demonstrated the application of the
SRPM method for estimating brain connectivity during stage 2 sleep
spindles from human electrocorticography (ECoG) recordings using an
8 × 8 electrode array. The ECoG recordings that we analyzed were from a
32-year-old male patient with long-standing pharmaco-resistant left tem-
poral lobe complex partial epilepsy. Sleep spindles were automatically
detected using delay differential analysis and then analyzed with SRPM
and the Louvain method for community detection. We found spatially
localized brain networks within and between neighboring cortical areas
during spindles, in contrast to the case when sleep spindles were not
present.

1 Introduction

1.1 The Caveat in the Correlation Method. The correlation method is
one of the most commonly used methods for estimating brain functional
connectivity (Anand et al., 2005; Biswal, Yetkin, Haughton, & Hyde, 1995;
Rubinov & Sporns, 2010; Siegle, Thompson, Carter, Steinhauer, & Thase,
2007; Smith et al., 2011; Uddin, Kelly, Biswal, Castellanos, & Milham, 2009;
Vertes et al., 2012; Zhou, Thompson, & Siegle, 2009; Bullmore & Bassett,
2011; McIntosh, Rajah, & Lobaugh, 2003; Laufs et al., 2003). Biswal et al.
(1995) analyzed the functional connectivity of the resting state human brain
from fMRI data using the correlation method and reported that the regions
of the primary sensory motor cortex that were activated secondary to hand
movement were functionally connected. They also found that time courses
of low-frequency (< 0.1 Hz) fluctuations in the resting brain had a high
degree of correlation within these regions and also with time courses in
several other regions associated with motor function. Other researchers
(Cordes et al., 2000; Xiong, Parsons, Gao, and Fox, 1999) repeated this ex-
periment by Biswal et al. (1995) and found similar results.
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In another study of the resting state, Greicius, Krasnow, Reiss, and Menon
(2003) found the posterior cingulate cortex (PCC) and ventral anterior cin-
gulate cortex (vACC), via the correlation method, to be functionally con-
nected within themselves and also with each other. The authors observed
very high correlation in these regions under three specific conditions dur-
ing a working memory task, a visual processing task, and at rest. They
identified these regions with the default mode network of the brain. Fox,
Corbetta, Snyder, Vincent, and Raichle (2006) and Fox et al. (2005) found
similar results.

Uddin et al. (2009) also analyzed the functional connectivity of the default
mode network with the correlation method on resting state data to find dif-
ferences in functional connectivity between PCC and vACC and networks
that are positively corrrelated and anticorrelated with these two regions.
They observed that the positively correlated networks were the same for
PCC and vACC; however, the anticorrelated networks were different. Ac-
tivity in vACC negatively predicted activity in parietal visual spatial and
temporal attention networks, whereas activity in PCC negatively predicted
activity in prefrontal-based motor control circuits. Since the two major brain
regions comprising the default mode network showed different behavior
when correlated with other networks in the brain, the authors concluded
that there is significant heterogeneity within the default mode network.

Anand et al. (2005) studied the effect of antidepressants on the func-
tional connectivity of the human brain from fMRI data via the correlation
method in depressed and healthy control subjects. They measured the con-
nectivity between cortical and limbic regions during continuous exposure
to neutral, positive, and negative pictures. Depressed patients showed de-
creased corticolimbic functional connectivity compared to healthy subjects
during the resting state and on exposure to emotionally valenced pictures.
At rest and on exposure to neutral and positive pictures, the functional
connectivity between the anterior cingulate cortex and limbic regions was
significantly increased in patients after treatment. However, on exposure to
negative pictures, corticolimbic functional connectivity remained decreased
in depressed patients. The authors concluded that antidepressant treatment
increases corticolimbic connectivity in depressed patients.

Hampson, Peterson, Skudlarski, Gatenby, and Gore (2002) have found
functional connectivity in low frequency using the correlation method. They
found a functional connection between the Brocas and Wernickes areas in
healthy subjects at rest. The functional connection increased when subjects
started continuously listening to narrative text. Furthermore, significant
correlation between the Brocas area and a region in the left premotor cortex
was found at rest, and it increased during continuous listening.

Although the research on functional connectivity estimation using the
correlation method is promising and exciting, the conclusions drawn from
the experimental analysis can be misleading or wrong since the regions
might show high correlation (i.e., they are functionally connected) due to a
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common input and not to strong physical connections between themselves
(Wang, Kang, Kemmer, & Guo, 2016). Recently Glasser et al. (2016), in a
study of multimodal magnetic resonance images from the Human Connec-
tome Project (HCP), identified many new areas in the human cortex using
a machine learning classifier. Pairs of these areas with a high degree of
functional connectivity also received common input from other areas.

1.2 Solution: The Sparse Regularized Precision Matrix Method. Due
to the shortcomings of the correlation method that we have outlined, some
researchers have used partial correlations to measure strong direct interac-
tions between pairs of regions while simultaneously removing the influence
of the rest of the regions (Dempster, 1972; Lauritzen, 1996; Whittaker, 1990).
Thus, partial correlations help identify pairwise brain regions that are con-
ditionally independent given all other brain regions. When the output of
the brain regions follows a multivariate gaussian distribution, the inverse
of the covariance matrix (also known as the precision matrix, concentration
matrix, or information matrix) can be used to calculate the pairwise partial
correlations. A value of zero or very close to zero in the precision matrix
indicates that the two brain regions are conditionally independent given the
rest of the brain regions. In practice, the precision matrix can be estimated
by simply inverting the sample covariance matrix provided a sufficiently
large number of samples is available.

But when the number of samples is relatively small, the sample covari-
ance matrix is a poor estimator of the eigenvalues of the covariance matrix,
and thus the estimated precision matrix might produce a large number of
false-positive and false-negative connections in a given brain network. If
we assume that the number of connections between the regions in a given
brain network is small (i.e., the precision matrix is sparse), then the sparse
regularized precision matrix (SRPM) X can be estimated by solving the
following Lq regularized optimization problem:

arg min
X�0

[−log det(X) + tr(SX) + λ‖X‖q
q
]
, (1.1)

where λ is the regularization parameter balancing the error in the maximum
likelihood estimate (MLE) of the precision matrix and the sparsity (The MLE
of the precision matrix is the inverse of the sample covariance matrix ac-
cording to the invariance principle), S is the sample covariance matrix and
0 ≤ q ≤ 1. Several algorithms (Banerjee, El Ghaoui, & d’Aspremont, 2008;
Friedman, Hastie, & Tibshirani, 2008; Hsieh, Sustik, Dhillon, & Raviku-
mar, 2011; Hsieh, Sustik, Dhillon, Ravikumar, & Poldrack, 2013; Oztoprak,
Nocedal, Rennie, & Olsen, 2012; Rothman, Bickel, Levina, & Zhu, 2008;
Scheinberg, Ma, & Goldfarb, 2010; Yuan & Lin, 2007) have been proposed
for the q = 1 case. For the q = 0 case, algorithms proposed in Marjanovic
and Hero (2015) and Marjanovic and Solo (2014) can be used to estimate
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the SRPM. Marjanovic and Solo (2014) proposed an algorithm to solve the
optimization problem in equation 1.1 for the general 0 ≤ q < 1 case.

Note that when q = 1, the optimization problem in equation 1.1 is a
convex optimization problem. We use the QUIC algorithm (Hsieh et al.,
2011, 2013) to estimate the SRPM for the simulations and experimental data
analysis throughout this letter.

1.3 Prior Research for Human Brain Functional Connectivity Estima-
tion Using the SRPM Method. The SRPM algorithm has been applied to
obtain brain networks from voxels data in (Hsieh et al., 2011, 2013) using
q = 1. Strong functionally connected regions were primarily found in gray
matter regions in the human brain. Modularity-based clustering (Blondel,
Guillaume, Lambiotte, & Lefebvre, 2008; Brandes et al., 2008; Newman &
Girvan, 2004; Newman, 2006; Reichardt & Bornholdt, 2006; Ronhovde &
Nussinov, 2009; Sporns, 2010; Sun, Danila, Josić, & Bassler, 2009) was then
applied to the regularized precision matrix obtained from the algorithm. A
number of resting state networks were identified, including default mode
and sensorimotor networks. In addition, the method identified a number
of structured coherent noise sources in the data set. The modules detected
by the QUIC algorithm were similar to those identified using independent
component analysis on the same data set without the need for the extensive
dimensionality reduction (without statistical guarantees) inherent in such
techniques.

Ryali, Chen, Supekar, and Menon (2012) applied the SRPM method with
q = 1 to resting state fMRI data and found a modular architecture charac-
terized by strong interhemispheric links, distinct ventral and dorsal stream
pathways, and a major hub in the posterior medial cortex.

Varoquaux, Gramfort, Jean-Baptiste, and Thirion (2010) analyzed human
brain functional connectivity using the SRPM method with q = 1 and after
clustering found regions corresponding to important brain areas such as
the primary visual system (medial visual areas), the dorsal visual pathway,
the occipital pole, and the intraparietal areas comprising the default mode
network, the fronto-parietal networks, the ventral visual pathway, the lat-
eral visual areas, and the inferior temporal lobe. The default mode and the
fronto-parietal networks appeared as hubs, connecting different networks
with different functions, such as the visual streams, but also the motor areas,
as well as the frontal regions.

Monti et al. (2014) analyzed the change in functional connectivity in
the human brain with respect to time using the SRPM method with q = 1.
Healthy patients were asked to perform a simple but attentionally demand-
ing cognitive task. They observed that the activity of the right inferior frontal
gyrus and the right inferior parietal lobe dynamically (with respect to time)
changed with the task. The authors concluded that both regions play a key
role in the attention and executive function during cognitively demanding
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tasks and may be fundamental in regulating the balance between other
brain regions.

Rosa et al. (2015) applied the SRPM method with q = 1 for patient
classification by analyzing brain functional connectivity from fMRI data.
They were able to distinguish patients with major depressive disorder from
healthy control subjects while the participants performed gender discrimi-
nation and emotional tasks during the visualization of emotionally valent
faces.

Allen et al. (2012) estimated whole-brain functional connectivity dy-
namics using the SRPM method with q = 1 and clustering algorithms. They
analyzed resting state data from a large sample of young adults and found
connections between regions in the lateral parietal and cingulate cortex. This
result was in contrast to other studies, which characterized such regions as
separate entities. They also found that the dynamic functional connectivity
of the human brain was markedly different from the stationary brain con-
nectivity. The authors concluded that the study of time-varying connectivity
patterns of the human brain will widen our understanding of cognitive and
behavioral dynamics.

The SRPM method with q = 1 also has been used to estimate brain func-
tional connectivity at a neuronal level in Yatsenko et al. (2015), where it was
claimed that the SRPM method found more biologically plausible brain
networks than the correlation method.

Wang et al. (2016) applied the SRPM method with q = 1 for human brain
functional connectivity estimation from fMRI data and compared it with the
functional connectivity estimated by the correlation method. They found
that the SRPM method was able to remove considerable between-module
connections, which were identified by the correlation method. When they
applied the correlation method, the majority of the connections found
were within-module connections. In addition, the authors found between-
module connections, in particular between the three visual networks (Med
Vis, Op Vis, Lat Vis) and between the auditory network and the sensori-
motor network. But when they analyzed the partial correlations obtained
from the SRPM method, they found relatively stronger within-module con-
nections and very few between-module connections in comparison to the
correlation method, indicating that the significant direct connections in the
human brain are within-module connections. In particular, 34% of the sig-
nificant connections found in the correlation method became insignificant
after calculating the partial correlations from the SRPM method. This sug-
gested that the between-module connections are mainly due to common
inputs and not due to direct interactions between modules.

Although the SRPM method and the inverse covariance method have
been previously applied in brain research to identify functionally connected
networks in the human brain and conclusions have been drawn regarding
how the brain processes information, more experimental analysis is neces-
sary to verify these claims.
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1.4 First Contribution: Demonstrating That SRPM Can Truly Find
the Physical Connection in a Network. In this letter, we generate artifi-
cial networks by simulation and demonstrate that the SRPM method can
indeed find a true physical connection between a pair of nodes in contrast
to the correlation method and the inverse covariance method. This is the
first contribution of the letter. To evaluate the performance of the SRPM
method, we generate synthetic data from two physical models: (1) a me-
chanical model that considers a cascade connection of a number of springs
and masses and (2) an electrical circuit model that consists of resistors (R)
and capacitors (C). The purpose is to demonstrate that the connectivity pat-
tern of the spring-mass model can be obtained from the SRPM associated
with the displacements of the masses and the connectivity pattern of the
RC circuit model can be obtained from the SRPM associated with the volt-
ages measured at the nodes. The SRPM method is shown to give superior
performance compared with the correlation method and the inverse covari-
ance method and is also able to find the ground-truth connection. In other
words, it is shown that the correlation method and the inverse covariance
method may not be able to recover the true connectivity of the associated
network in the simulated models in contrast to the SRPM method. Note
that the inverse covariance matrix and the SRPM have to be normalized to
obtain the partial correlations (Whittaker, 1990).

1.5 Second Contribution: Theoretical Analysis of the SRPM Method.
Furthermore, we give interpretations for the recovery of the connectivity
structure via the SRPM method by energy models using the Boltzmann dis-
tribution (MacKay, 2002). This is the second contribution of the letter. This
shows that theoretically, if the inverse covariance matrix can estimate the
connectivity structure between regions under consideration, then the SRPM
method should be used to estimate the regularized version of the inverse
covariance matrix to avoid false-positive and false-negative connections
when a finite number of samples is available.

1.6 Third Contribution: Application of SRPM in Analyzing Brain
Connectivity in the Presence and Absence of Sleep Spindles. During
sleep, our brains are highly active. The low-amplitude, high-frequency ac-
tivity in the neocortex characteristic of the awake state is replaced with a
sequence of distinct phases with generally high-amplitude, low-frequency
activity. Soon after the onset of sleep, brief episodes of 10 Hz to 14 Hz,
synchronized spindling occur in the thalamus and cortex, producing large-
scale spatiotemporal coherence throughout the forebrain. Throughout the
night, the cortex alternates between periods of slow-wave sleep in the range
of 2 Hz to 4 Hz and episodes of rapid eye movement sleep (REM), char-
acterized by sharp waves of activity in the pons, the thalamus, and the
occipital cortex, while also passing through intermediate non-REM sleep
stages (Sejnowski, 1995; Sejnowski & Destexhe, 2000).
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Activity in the sleeping brain is largely hidden from us because very
little content of the brain activity that occurs during sleep directly enters
consciousness. Hence, it becomes important to understand the patterns
of electrical activity of neurons that occur in the brain during sleep. It has
been suggested that the important functions of sleep are adaptive strategies,
physical recovery, energy conservation, and information processing, among
others. There is also evidence supporting the role of sleep in learning and
memory consolidation, and neuronal plasticity (Sejnowski, 1995; Sejnowski
& Destexhe, 2000; Stickgold & Walker, 2005, 2007; Martin et al., 2013).

Fogel, Nader, Cote, and Smith (2007) investigated the functional signifi-
cance of the considerable interindividual differences in sleep spindles. The
pattern of the sleep spindles within individuals is quite stable and varies lit-
tle from night to night. Because of the remarkable intra-individual stability
in sleep spindles from night to night, it was hypothesized that sleep spindles
may serve as a “fingerprint” to account for interindividual differences.

Three separate studies were performed to broadly examine the relation-
ship between spindles and learning potential as measured by an IQ test. In
all three studies, it was found that the number of sleep spindles was pos-
itively correlated with performance IQ. Power in the 12–18 Hz frequency
band, a more objective indicator of the level of stage 2 spindle activity,
displayed even stronger correlations with performance IQ. These results
indicated that performance IQ can be predicted simply by knowing the
number of spindles and sigma power. This suggested that sleep spindles
and sigma power may be biological markers for the specific abilities as-
sessed by performance IQ. This relationship might reflect the efficiency of
information processing that is dependent on thalamocortical communica-
tion. In other words, richer cortical representations would require more
thalamocortical interconnectedness. Maintenance and encoding of new in-
formation in a more complex system may require more thalamocortical
activity or a more efficient thalamocortical system. This efficiency or added
complexity may be reflected in the higher number of sleep spindles in the
cortical areas underlying perceptual or analytical abilities in individuals
with a higher performance IQ.

Fogel and Smith (2006) examined the learning-dependent changes in
sleep, including stage 2 sleep spindles, where subjects went through an
intense period of simple motor procedural learning. Overall, the results
from the study supported the hypothesis that sleep spindles are intimately
involved with the consolidation of simple motor procedural memory and
may be important for the offline reprocessing of recently acquired simple
procedural tasks. They found an increase in the density of sleep spindles.
Furthermore, they found that the overall improvement on motor tasks was
positively correlated with the increase in sleep spindle density. In addition,
there was an increase in the duration of stage 2 sleep following new learning.
The magnitude of this change was very large: overall, there was a 15.8%
increase in stage 2 sleep. The increase in the duration of stage 2 sleep would
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be expected to increase the total number of sleep spindles alone. In addition
to the increased duration of stage 2 sleep, there was an increase in spindle
density. This suggested that motor learning–dependent changes in sleep
spindles are independent of the time spent in stage 2 sleep. To determine if
the changes to sleep following simple procedural memory were limited to
stage 2 sleep and sleep spindles, REM density was also considered in this
experiment. The researchers found that neither the duration of REM sleep
nor the density of REM changed following new learning, which suggested
that the changes to sleep following new simple procedural learning affected
only stage 2 sleep and is specific to sleep spindles.

Schabus et al. (2004) studied the functional significance of stage 2 sleep
spindle activity for declarative memory consolidation. This study measured
spindle activity during stage 2 sleep following a (declarative) word-pair as-
sociation task as compared to a control task. Participants performed a cued
recall in the evening after learning (160 word pairs), as well as in the sub-
sequent morning after 8 hours of undisturbed sleep with full polysomnog-
raphy. Overnight change in the number of recalled words correlated signif-
icantly with increased spindle activity during the experimental night. The
results also suggested that the increase in spindle activity cannot simply be
accounted for by changes in (stage 2) sleep architecture or subjects’ fatigue.
They found that the relationship between memory performance and spindle
activity was not an indirect effect of sleep-stage durations. Even when all
sleep stages were controlled, the correlation between memory performance
and spindle activity changes remained significant. Thus, their findings pro-
vided evidence for the involvement of sleep spindle activity in memory
consolidation as measured by the declarative memory task performed be-
fore and after the experimental night. The fact that spindle activity was
related only to changes in memory performance (increase or decrease over
the night) was consistent with the hypothesis that spindle activity is specif-
ically related to the consolidation of recently established memory traces. In
other words, the findings of the study were in good agreement with the role
of sleep spindles for memory consolidation. Several other researchers (Gais
& Born, 2004; Gais, Mölle, Helms, & Born, 2002; Marshall & Born, 2007) also
have reported similar results.

Walker, Brakefield, Morgan, Hobson, and Stickgold (2002) found that
improvement in motor skill performance in humans was due to sleep.
They found evidence that continued improvement on a motor skill task
occurs only across a night of sleep, while an equivalent period of wake
offers no significant benefit to performance. Furthermore, more than half
the variance in overnight improvement was explained by the amount of
stage 2 sleep obtained during night. The authors speculated that the en-
hancement in motor skill was due to the sleep spindles, which are thought
to cause massive calcium entry into pyramidal cells of the cerebral cor-
tex, triggering intracellular calcium-dependent mechanisms required for
synaptic plasticity (Sejnowski & Destexhe, 2000) and have been shown to
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increase following training on a motor task (Fogel et al., 2007; Fogel & Smith,
2006) as described previously. These implications become most significant
in the broader context of acquiring real-life skillful actions such as learn-
ing motor patterns required for movement-based sports, learning a musical
instrument, or developing artistic movement control. All such learning of
new actions may require sleep before the maximum benefit of practice is
expressed.

Smith and Macneill (1994) found impaired motor memory for a pursuit
rotor task following stage 2 sleep loss in college students. Among the sub-
jects considered, one group was subjected to REM sleep deprivation and
the other group to non-REM sleep deprivation following acquisition of a
pure motor task, the pursuit rotor. Results showed that the REM sleep de-
privation group had excellent memory for the task, whereas the non-REM
sleep deprivation group had a deficit in memory for the task. It was con-
cluded that stage 2 sleep (where sleep spindles occur) rather than REM
sleep was the important stage of sleep for efficient memory processing of
the pursuit motor task. In other words, the newly acquired pure motor skill
was most efficient when posttraining stage 2 sleep was allowed and was
impaired when this stage of sleep was reduced or interrupted in the sleep
night following the training session.

Meier-Koll, Bussmann, Schmidt, and Neuschwander (1999) tried to link
the storing of spatial information and episodic memory to sleep stages.
Two city mazes, a simple and a complex one, were created by means of a
computer program and were presented to the subjects on a TV screen. The
task was to find various end points and the way back to the starting point
with the help of a PC mouse. After the task, the subjects slept, and the sleep
stages were measured polygraphically. The subjects exposed to this exper-
iment had significantly enhanced sleep spindle activities in comparison to
subjects who had experienced neither maze. The researchers concluded that
there is a functional linkage between stage 2 sleep spindles and learning or
information processing in cortical areas.

Furthermore, because of its well-organized and consistent structure,
sleep can be a valuable instrument for investigating neurological disorders
such as Alzheimer’s disease, progressive supranuclear palsy, REM sleep be-
havior disorder, Parkinson’s disease, dementia with Lewy bodies, multiple
system atrophy (MSA), Huntington’s disease and Creutzfeldt-Jakob dis-
ease (Petit, Gagnon, Fantini, Ferini-Strambi, & Montplaisir, 2004). Ferrarelli
et al. (2007) investigated whether sleep spindles differ between subjects
with schizophrenia, healthy individuals, and a psychiatric control group
with a history of depression. The authors found a decrease in sleep spindle
number, amplitude, duration, and integrated spindle activity in patients
with schizophrenia. Furthermore, integrated spindle activity had an effect
size corresponding to 93.0% or 90.2% separation of the schizophrenia from
the comparison or depression group. Since sleep spindles are generated by
the thalamic reticular nucleus in conjunction with specific thalamic nuclei
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and are modulated by corticothalamic and thalamocortical connections, it
was concluded that the deficit in sleep spindles in schizophrenia subjects
may reflect dysfunction in thalamic-reticular and thalamocortical mecha-
nisms and could represent a biological marker of illness. Hence, finding the
functional pattern in the brain during sleep spindles can provide valuable
information for understanding the pathophysiology and for assisting the
diagnosis of neurodegenerative diseases.

From these studies, it is quite clear that sleep and sleep spindles play
a vital role in memory and learning and in investigation of neurological
disorders in the human brain. Thus, finding connectivity during sleep will
surely give us insight into the strong activity regions in the brain areas
and how they are organized, which may be responsible for information
processing. Unfortunately, there has been very little research regarding
the brain connectivity pattern during sleep. Moreover, researchers have
termed the correlation of brain activity between brain regions as “functional
connectivity”and have drawn conclusions based on that. These conclusions
are flawed since the correlation method fails to identify the true connectivity
pattern of a physical network, as we will show via extensive simulations
using artificial networks.

Spoormaker et al. (2010) characterized the human functional brain net-
work during non-REM sleep by using the correlation method on fMRI
recordings. In this study, the authors used the correlation method to explore
how physiological changes during sleep are reflected in functional connec-
tivity and small-world network properties of a large-scale, low-frequency
functional brain network. They observed that in the transition from wake-
fulness to light sleep, thalamocortical connectivity was sharply reduced,
whereas corticocortical connectivity increased; corticocortical connectivity
subsequently broke down in slow-wave sleep. Local clustering values were
closest to random values in light sleep, whereas slow-wave sleep was char-
acterized by the highest clustering ratio (gamma). The authors claimed
that the changes in consciousness in the descent to sleep are subserved by
reduced thalamocortical connectivity at sleep onset and a breakdown of
general connectivity in slow-wave sleep, with both processes limiting the
capacity of the brain to integrate information across functional modules.

Larson-Prior et al. (2009) studied cortical network functional connectiv-
ity during sleep using the correlation method. They examined functional
connectivity using conventional seed-based analyses in three primary sen-
sory and three association networks as normal young adults transitioned
from wakefulness to light sleep. They found that functional connectivity in
non-REM sleep was maintained in each network throughout all examined
states of arousal. Further, these networks were consistent across subjects.
The authors were surprised that they did not find any evidence of change
in functional connectivity in the sensory (visual, auditory, and somatomo-
tor) or cognitive (dorsal attention, default and executive control) networks
examined.
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Andrade et al. (2011) also investigated the functional connectivity be-
tween the hippocampal and neocortical regions of the human brain in non-
REM sleep using the correlation method. They found increased connectivity
between hippocampal and neocortical regions of the brain during stage 2
sleep spindles, suggesting increased capacity for global information trans-
fer during sleep spindles.

Though the results of these studies are interesting, further experimental
validation is necessary to support their claims and derive a more thor-
ough physiological interpretation. A flaw in these analyses is the use of the
correlation method to characterize the brain functional connectivity pattern
during sleep since two brain regions might show very high correlation even
if there is no strong physical connection between them; rather, the correla-
tion could be due to a common input. Hence, this is the motivation for the
application of the sparse regularized precision matrix (SRPM) method in
connectivity estimation during sleep.

In our third contribution, we demonstrate the application of the SRPM
method for estimating brain connectivity during sleep spindles from human
electrocorticography (ECoG) data using an 8 × 8 electrode array. The ECoG
recordings that we analyzed were from a 32-year-old male patient with long-
standing pharmaco-resistant left temporal lobe complex partial epilepsy.
Sleep spindles have a major role in learning and memory consolidation. Our
purpose in this letter is to find and understand the functional organization of
brain areas in the presence and absence of sleep spindles. We find that brain
connectivity during the spindles is highly spatially localized in contrast to
the case when sleep spindles are not present. We believe that this can give us
further insight into the functioning of brain areas during spindles in stage
2 sleep. We can find the connectivity pattern in the presence and absence of
sleep spindles by the SRPM method.

1.7 Fourth Contribution: Detection of Sleep Spindles Using Delay
Differential Analysis (DDA). For the detection of sleep spindles, we em-
ploy a novel method called DDA (Kremliovsky & Kadtke, 1997; Lainscsek,
Hernandez, Weyhenmeyer, Sejnowski, & Poizner, 2013; Lainscsek & Se-
jnowski, 2015; Lainscsek, Weyhenmeyer, Hernandez, Poizner, & Sejnowski,
2013; Sampson, Lainscsek, Cash, Halgren, & Sejnowski, 2015). This is the
fourth contribution of the letter. DDA is a time domain classification frame-
work based on embedding theory in nonlinear dynamics. Given a recording
(here, ECoG data) from some unknown dynamical system (here, the brain),
an embedding will reveal the nonlinear invariant properties of the system,
even from a single time series. The embedding in DDA provides a low-
dimensional nonlinear functional basis onto which the data are mapped.
Since this basis is built on the dynamical structure of the data, preprocessing
of the data (such as filtering) is not necessary. DDA yields a low number
of features (around four), as compared with traditional spectral techniques,
which greatly reduces the risk of overfitting. Frequency-based approaches
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Figure 1: The spring-mass model. The black dots denote continuation of springs
and masses.

that have often been used for detecting spindles are sensitive to certain arti-
facts involving transient increases in spectral power in the band of interest;
with DDA, we train on the real data to find the relevant dynamical features
for spindle identification.

For clustering of similar brain regions, we use the Louvain method for
community detection (LMCD) (Blondel et al., 2008; Brandes et al., 2008;
Newman & Girvan, 2004; Newman, 2006; Reichardt & Bornholdt, 2006;
Ronhovde & Nussinov, 2009; Sporns, 2010; Sun et al., 2009) on the SRPM.
LMCD is a widely used method for clustering in human brain imaging data
analysis (Bassett et al., 2010, 2011; Cole, Bassett, Power, Braver, & Petersen,
2014; Meunier, Lambiotte, & Bullmore, 2010; Rubinov & Sporns, 2010, 2011;
Sporns, 2011; Zuo et al., 2012).

1.8 Organization of the Letter. The rest of the letter is organized as
follows. In section 2, we describe the spring-mass model and show how
the connectivity of the springs and masses can be recovered by the SRPM
method. In section 3, we describe the RC circuit model and describe how to
estimate the connectivity pattern of the nodes by using the SRPM method. In
the RC circuit model, we consider two network topologies: the tree topology
and the mesh topology. In section 4, we first describe the DDA method for
automatically detecting sleep spindles from human ECoG data and then
proceed to the application of SRPM to recover the connectivity among the
brain regions during the sleep spindles. We draw conclusions in section 5.

2 The Spring-Mass Model

The spring-mass model that we use in our simulation is shown in Figure 1.
We assume that we can measure the displacements of the masses in the
model. There are 50 equal masses m connected in cascade via springs, each
with a spring constant k. The left-most and the right-most springs are con-
nected to a rigid wall. For our simulation (hereafter all units are in mks),
we use m = 0.1 and k = 1. We assume that this spring-mass model is sub-
ject to thermal perturbation. In addition, we also assume that each spring
is subjected to external force, and we model this external force as a white
noise process with variance σ 2. For our simulation, we use σ 2 = 0.000025.
We denote the displacements of the masses as x1, x2, . . . , x50 and the ex-
ternal forces associated with each of them as w1, w2, . . . , w50, respectively.
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Using Newton’s second law of motion and Hooke’s law, we can write the
displacement equations of the masses as

mẍ1 =−kx1 + k(x2 − x1) + w1

mẍ2 =−k(x2 − x1) + k(x3 − x2) + w2

...

mẍ50 =−k(x50 − x49) − kx50 + w50. (2.1)

In matrix-vector form, the above set of equations can be written as

m

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎣

ẍ1
ẍ2
ẍ3
ẍ4
...

ẍ50

⎤

⎥
⎥⎥
⎥
⎥⎥⎥
⎦

= k

⎡

⎢
⎢⎢
⎢⎢⎢⎢
⎣

−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
0 0 1 −2 · · · 0
...

...
...

...
. . .

...
0 0 0 · · · 1 −2

⎤

⎥⎥
⎥
⎥⎥⎥⎥
⎦

⎡

⎢
⎢⎢
⎢
⎢⎢⎢
⎣

x1
x2
x3
x4
...

x50

⎤

⎥
⎥⎥
⎥
⎥⎥⎥
⎦

+

⎡

⎢
⎢⎢
⎢⎢⎢⎢
⎣

w1
w2
w3
w4
...

w50

⎤

⎥
⎥⎥
⎥
⎥⎥⎥
⎦

.

(2.2)

In compact form, equation 2.2 can be represented as

mẍ = kCx + w, (2.3)

where x is the displacement vector, w is the white noise vector, and C is
the connectivity (or ground-truth) matrix and is shown in Figure 2. Using a
second-order approximation of the double derivative on the left-hand side
in equation 2.3, we have

m
[

x(t + h) − 2x(t) + x(t − h)

h2

]
= kCx(t) + w(t), (2.4)

where h is the step size and t denotes the time instant. We use a random
initialization of x with variance σ 2

x = 0.000001. We then solve equation 2.4
repeatedly to generate N samples of the displacement vector x correspond-
ing to N consecutive time points. For our simulation, we choose h = 0.007
and N = 50,000. We use these N samples to form the sample covariance
matrix.

We next apply the correlation method, the inverse covariance method,
and the SRPM method to recover the connectivity pattern of the spring-
mass system. The value of λ for the SRPM method is chosen to be 0.0009.
The results are shown in Figure 3. Note that the ground-truth matrix in
Figure 3 is binarized such that a one denotes either a diagonal element
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Figure 2: The connectivity matrix or the ground-truth matrix C for the spring-
mass model.

Figure 3: Results of the estimation methods for the spring-mass model. (a) The
ground-truth matrix. (b) The estimated connection matrix from the correlation
method (16% error). (c) The estimated connection matrix from the inverse co-
variance method (53% error). (d) The estimated connection matrix from the
SRPM method (0% error). In panels a–d, black denotes either a diagonal ele-
ment or a connectivity between two masses via a spring, and white denotes no
connectivity.

or a connectivity between two masses via a spring and a zero denotes no
connectivity. For all three methods, we first estimate the connection matrix
and choose the M largest elements (in absolute value) in the estimated
connection matrix, where M is the number of nonzero elements in the
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ground-truth matrix. In Figure 3, for each method, we denote these M
largest elements as ones and the rest as zeros. The binarization is done for
clarity and better visualization. The error percentage in the figures for a
particular method is calculated as the fraction of false-positive and false-
negative connections between the binarized ground-truth matrix and the
binarized estimated connection matrix for that method.

From Figure 3b, we note that the correlation method is not able to fully
recover the true connectivity structure of the spring-mass system. Since
the sample covariance matrix is a poor estimator of the true covariance
matrix, the inverse covariance method is even worse than the correlation
method and results in a large number of false-positive and false-negative
connections. The SRPM method is able to recover successfully the true
connectivity pattern of the spring-mass model.

2.1 Explanation for the Recovery of the Connectivity Structure via
the SRPM Method in the Spring-Mass Model. Assuming that the spring-
mass model is subject only to thermal perturbation (i.e., if we assume w = 0
in equation 2.3), then the probability distribution of the displacement vector
x can be given by the Boltzmann distribution (MacKay, 2002) as

P(x) = 1
Z

exp[−βE(x)], (2.5)

where β = 1/(kT ), k is the Boltzmann constant, T is the temperature, and Z
is a normalization factor. In equation 2.5, E(x) is the energy of the spring-
mass system. For the model in Figure 1, the energy E(x) can be written
as

E(x)= 1
2

kx2
1 + 1

2
k(x2 − x1)

2 + 1
2

k(x3 − x2)
2 + · · · + 1

2
kx2

50

= 1
2

xTC̃x, (2.6)

where xT denotes the transpose of x and C̃ = −C. Hence, we have

P(x) = 1
Z

exp[−βxTC̃x]. (2.7)

We note that P(x) in equation 2.7 is a multivariate gaussian distribution in
x whose inverse covariance matrix differs from C̃ only by a scalar multiple,
implying that the inverse covariance matrix in equation 2.7 is just a scaled
version of the connectivity matrix C in equation 2.3. Hence, the inverse
covariance matrix can recover the connectivity structure of the cascade
connection of springs and masses given in Figure 1.
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Since the sample covariance matrix is a poor estimator of the eigenvalues
of the covariance matrix, the inverse of the covariance matrix produces a
large number of false-positive and false-negative connections as shown in
Figure 3c. In contrast, since the connectivity structure is sparse, we can use
the SRPM method to recover the connectivity pattern of the spring-mass
system.

Remark 1. The performance (in terms of error percentage) of the correla-
tion method, the inverse covariance method, and the SRPM method in the
spring-mass model does not change under different types of noise distri-
butions. We have tested the performance of these methods under gaussian,
Poisson, and uniform distributions and have obtained similar performance
to that given in Figure 3 for the three methods.

Remark 2. The performance (in terms of error percentage) of the three
methods in the spring-mass model does not change for signal-to-noise ratio
up to 30 dB, and the performance is very similar to that given in Figure 3
for the three methods.

These results are not surprising. Note that in the spring-mass model, we
model the noise as an external force. So no matter how “forcefully”(noise
variance) or in what way (noise distribution) we wobble the spring-mass
system, the connectivity pattern will not change. Noise is not responsible for
the connectivity pattern, and the connectivity patterns for different methods
shown in Figure 3 are due to the methods themselves.

3 The RC Circuit Model

The RC circuit model is taken from Sojoudi and Doyle (2014), who ap-
plied an SRPM method with q = 1 (graphical LASSO). We consider two
network topologies: the tree network and the mesh network. We assume
that the voltages at the nodes are available for measurement and estimate
the connectivity by the three methods from these measured voltages. An
edge between a pair of nodes denotes a parallel resistor-capacitor (RC) cir-
cuit as shown in Figure 4a. We assume that the circuit is activated only by
the thermal current (i.e., there is no supply of external current) and each
node is subject to thermal current as shown in Figure 4b. We model this
thermal current as white noise known as the Johnson-Nyquist noise. These
stochastic currents produce stochastic voltages at the nodes, which in turn
cause the charging and discharging of the capacitors in the network.

3.1 The Tree Network. This network is shown in Figure 5, where the
nodes are denoted as numbers and each edge represents a parallel RC
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Figure 4: Elements of the RC circuit model. (a) Parallel RC circuit between a
pair of nodes. (b) Thermal current associated with a node.

Figure 5: The tree network.

circuit as in Figure 4a. We consider 10 nodes in this example. Let v denote
the vector of voltages at the nodes and i denote the vector of stochastic
currents injected to the nodes by some external device. Using Kirchoff’s
law, we have

Av̇ = −Gv + i, (3.1)

where A is the capacitance matrix and G is the conductance matrix (see
Sojoudi & Doyle, 2014, regarding how to construct the matrices A and G).
For our simulation, we assume that each of the values of the capacitances
and conductances denoted as edges in Figure 5 has a value of 1. Moreover,
node 5 of the circuit is grounded through a parallel RC circuit, and for this,
the values of both the capacitance and the conductance are taken to be 4.
Hence, in this case, A ≡ G, and we call A or G the connectivity matrix
or the ground-truth matrix of the RC circuit. Note that the values of the
capacitances and conductances in the tree network are chosen such that the
connectivity matrix A (≡ G) is positive definite. The connectivity matrix
for the given tree network is shown in Figure 6. Assuming that the current
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Figure 6: The connectivity matrix or the ground-truth matrix A (≡ G) for the
tree network.

vector i is due to the stochastic currents from the white thermal noise, we
can write equation 3.1 as (Sojoudi & Doyle, 2014)

Av̇ = −Gv − G
1
2 w, (3.2)

where G
1
2 is the square root (not the elementwise square root) of the matrix

G. For our simulation, we choose variance σ 2 = 4 for the white noise process
w in equation 3.2. Using a first-order approximation of the derivative on
the left-hand side in equation 3.2, we have

A
[

v(t) − v(t − h)

h

]
= −Gv(t) − G

1
2 w(t), (3.3)

where h is the step size and t denotes the time instant. For our simula-
tion, we choose h = 0.5. We use a random initialization of v with variance
σ 2

v = 0.0001. As done in the spring-mass example, we solve equation 3.3
iteratively to generate N samples for the voltages. For our simulation, we
choose N = 282.

We next apply the correlation method, the inverse covariance method,
and the SRPM method to recover the connectivity pattern of the tree net-
work. The value of λ for the SRPM method is chosen to be 0.01. The results
are shown in Figure 7. As done in the spring-mass example, we show only
the binarized results for better visualization.

We note that the correlation method and the inverse covariance method
are not able to recover the true connectivity pattern of the tree network. The
correlation method in particular has a large percentage of false-positive and
false-negative connections. This is due to the fact that node 5 is connected
to ground via a parallel RC circuit with relatively high conductance and
capacitance. Thus, the grounded node and its neighbors will have low
correlation and the ungrounded nodes and their neighbors will have high
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Figure 7: Results of the estimation methods for the tree network in the RC
circuit model. (a) The ground-truth matrix. (b) The estimated connection matrix
from the correlation method (29% error). (c) The estimated connection matrix
from the inverse covariance method (7% error). (d) The estimated connection
matrix from the SRPM method (0% error). In panels a–d, black denotes either a
diagonal element or a connectivity between two nodes, and white denotes no
connectivity.

correlation even though they are not connected (Sojoudi & Doyle, 2014). In
contrast, the SRPM method is able to recover successfully the ground truth
of the tree network.

3.1.1 Explanation for the Recovery of the Connectivity Structure via the SRPM
Method in the Tree Network. Since we have assumed that the tree network
is only subject to thermal perturbation, the probability distribution of the
voltage vector v can be given by the Boltzmann distribution as

P(v) = 1
Z

exp[−βE(v)], (3.4)

where E(v) is the energy of the capacitors in the tree network and Z is the
corresponding normalization factor. For the given tree network in Figure 5,
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the energy E(v) can be written as

E(v)= 1
2

[(v5 − v1)
2 + (v5 − v2)

2 + (v5 − v3)
2

+ (v5 − v4)
2 + 4v2

5 + (v5 − v6)
2 + (v6 − v7)

2

+ (v6 − v8)
2 + (v6 − v9)

2 + (v6 − v10)
2]

= 1
2

vTAv, (3.5)

where vi denotes the voltage at the ith node, i = 1, 2, . . . , 10 and A is the
connectivity matrix of the tree network given in equation 3.2. Hence, we
have

P(v) = 1
Z

exp[−βvTAv], (3.6)

which is a multivariate gaussian distribution in v whose inverse covariance
matrix differs from A only by a scalar multiple. Hence, the inverse covari-
ance matrix can recover the connectivity pattern of the tree network given
in Figure 5. But since the sample covariance matrix is a poor estimator of the
eigenvalues of the covariance matrix, the inverse of the covariance matrix
produces false-positive and false-negative connections, as shown in Figure
7c. In contrast, since the connectivity structure is sparse, the SRPM method
is able to recover successfully the connectivity pattern of the tree network.

3.2 The Mesh Network. This network is shown in Figure 8, where the
nodes are denoted as numbers and each edge represents a parallel RC circuit
as in the tree network. We consider 24 nodes in this example. Equations 3.2
and 3.3 remain the same for this network with the corresponding A, G, and
v. For our simulation, we assume that each of the values of the capacitances
and conductances denoted as edges in Figure 8 has a value of 1. Moreover,
all the nodes indexed from 1 to 18 of the circuit are grounded through
parallel RC circuits, as is done for node 5 in the tree network, and the value
of both the capacitance and the conductance are taken to be 5 for each
parallel RC circuit connected to ground. Hence, in this case A ≡ G, and this
is the connectivity matrix or the ground-truth matrix for the mesh network.
Once again, note that the values of the capacitances and conductances in
the mesh network are chosen such that the connectivity matrix A (≡ G)
is positive definite. The connectivity matrix for the given mesh network
is shown in Figure 9. We again choose σ 2 = 4 for the white noise process
w in equation 3.2. The value of step size is chosen to be h = 0.5. We also
use a random initialization of v with variance σ 2

v = 1. As done in the tree
network, we solve equation 3.3 iteratively to generate N samples for the
voltages, and in this case, we choose N = 2000.
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Figure 8: The mesh network.

Figure 9: The connectivity matrix or the ground-truth matrix A (≡ G) for the
mesh network.

We again apply the correlation method, the inverse covariance method,
and the SRPM method to recover the connectivity pattern of the mesh
network. The value of λ for the SRPM method is chosen to be 0.005. The
results are shown in Figure 10. As done in the tree network, we show only
the binarized results.

We note that the correlation method and the inverse covariance method
are not able to recover the true connectivity pattern of the mesh network
with the correlation method having a large percentage of false-positive and
false-negative connections. We also observe that the ungrounded nodes and
their neighbors have high correlation even though they are not connected.
Once again, the SRPM method is able to successfully recover the ground
truth of the mesh network.
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Figure 10: Results of the estimation methods for the mesh network in the RC
circuit model. (a) The ground-truth matrix. (b) The estimated connection matrix
from the correlation method (40% error). (c) The estimated connection matrix
from the inverse covariance method (11% error). (d) The estimated connection
matrix from the SRPM method (0% error). In panels a–d, black denotes either a
diagonal element or a connectivity between two nodes, and white denotes no
connectivity.

3.2.1 Explanation for the Recovery of the Connectivity Structure via the SRPM
Method in the Mesh Network. Following the procedure in the tree network,
if we assume that the mesh network is subject only to thermal perturba-
tion, it is straightforward to show that the voltage vector v in the mesh
network follows a multivariate gaussian distribution whose inverse covari-
ance matrix differs from the connectivity matrix A of the mesh network
shown in Figure 8 only by a scalar multiple. Hence, the inverse covariance
matrix can recover the connectivity pattern of the mesh network. Once
again, the direct inverse of the covariance matrix produces false-positive
and false-negative connections as shown in Figure 10c. In contrast, since the
connectivity structure is sparse, the SRPM method is able to successfully
recover the connectivity structure of the mesh network.

Also, note that for the voltage vector v to follow a multivariate normal
distribution whose inverse covariance matrix differs from the connectivity
matrix A only by a scalar multiple, the RC circuit network need not be
one of the specific structures (tree and mesh) given in Figures 5 and 8. It is



626 A. Das et al.

straightforward to show (following the steps as before via the Boltzmann
distribution) that the inverse covariance matrix can recover the connectivity
pattern of an arbitrarily connected RC circuit network in the limit as the
number of samples increases to infinity.

Remark 3. The performance (in terms of error percentage) of the correlation
method, the covariance method, and the SRPM method in the tree network
and the mesh network does not change under different types of noise distri-
butions. We have tested the performance of these methods under gaussian,
Poisson, and uniform distributions and have obtained similar performance
to that given in Figure 7 for the tree network and Figure 10 for the mesh
network for the three methods.

Remark 4. The performance (in terms of error percentage) of the three
methods in the tree network and the mesh network does not change for
signal-to-noise ratio up to 30 dB, and the performance is very similar to
that given in Figure 7 for the tree network and in Figure 10 for the mesh
network for the three methods.

These results are not surprising. Note that in the RC networks, we have
modeled the noise as stochastic current from white thermal noise. If the
current goes up and down or changes direction, the connectivity pattern
will not change. Noise is not responsible for the connectivity pattern, and
the connectivity patterns for different methods shown in Figures 7 and 10
are due to the methods themselves.

4 Connectivity Estimation during Sleep Spindles from Human ECoG
Recordings

We now proceed to the application of the SRPM method in estimating
brain connectivity during sleep spindles from human ECoG data. We first
describe the DDA method for sleep spindle detection. Sleep spindles are de-
tected from single-channel time series data, and we repeat the DDA method
on each channel. To collect the ECoG data, we use an 8 × 8 electrode array,
hence 64 grid electrodes, or channels, in total. First, we describe the data
acquisition protocol. Next, we briefly describe the DDA method. Then we
apply the SRPM method for estimating the strongest connectivity between
the brain regions during the sleep spindles. For connectivity estimation,
we consider only time windows in which the spindles were present in a
relatively large number of channels. After estimating the connectivity, we
cluster similar brain regions together using the LMCD method and find
spatially localized brain networks. These localized brain networks might
suggest the flow of information in the brain areas during sleep spindles.

We clarify that the assumption of sparse connectivity is reasonable due
to the following. During the non-REM sleep, the thalamic neurons excite
the cortex with patterns of activity that are more spatially and temporally
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Table 1: Patient Medication Information.

Day Medication

Home medications Keppra 1000 bid
Day 1 Levetiracetam 1000 bid
Day 2 Levetiracetam 1000 bid
Day 3 Levetiracetam 500 bid
Day 4 Levetiracetam 500 bid
Day 5 off
Day 9 Levetiracetam 1500 qhs, lorazepam 1mg IV
Day 10 Levetiracetam 1000 bid

coherent than would normally be encountered in the awake state. Getting
these neurons to fire together is a potent way of enhancing their impact
on other neurons and the cortex, because the synaptic inputs arriving syn-
chronously on a neuron produce greater output than the same number of
inputs arriving asynchronously. Thus, if too many neurons fire together
at the same time, this amplification may go awry and lead to an epileptic
seizure (Steriade, McCormick, & Sejnowski, 1993). Therefore, the level of
activity and degree of synchrony in the neural networks and cortex of the
brain are strongly regulated through dynamic cellular mechanisms. Since at
a given time very few neuronal cells in the brain are active, the assumption
of sparse connectivity in the brain during sleep spindles is reasonable.

4.1 ECoG Data Acquisition and Protocol. ECoG recordings from a 32-
year-old male patient with long-standing pharmaco-resistant left temporal
lobe complex partial epilepsy were analyzed. Recordings were performed
using a standard clinical recording system (XLTEK, Natus Medical, San
Carlos, CA) with a 500 Hz sampling rate. The reference channel was a strip
of electrodes placed outside the dura and facing the skull at a region remote
from the other grid and strip electrodes. Subdural electrode arrays were
placed to confirm the hypothesized seizure focus and locate epileptogenic
tissue in relation to essential cortex, thus directing surgical treatment. The
decision to implant, the electrode targets, and the duration of implantation
were made entirely on clinical grounds with no input from this research
study. All data acquisition was performed under protocols monitored by
Institutional Review Board of the Massachusetts General Hospital accord-
ing to National Institutes of Health guidelines. Data selected for use in this
study were exclusively from stage 2 sleep, during time periods when no
seizures were occurring. The medication information for the patient is given
in Table 1. The recordings analyzed here are from day 10.

4.2 DDA Method for Sleep Spindle Detection in Human ECoG Data.
In order to detect sleep spindles reliably in the ECoG data, we used DDA.
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Figure 11: Delay differential analysis (DDA). (a) For an unknown dynamical
system (such as the brain) from which we can record the value of a single
variable over time (such as ECoG data), embedding theory states that we can
recover the nonlinear invariant properties of the original system. DDA combines
delay and differential embeddings in a functional form that allows time-domain
classification of the data. (b) Performance of DDA model forms is evaluated
with repeated random subsampling cross-validation. The data are repeatedly
divided at random into training and testing sets. (c) Applying the weights
(set by SVD) to the DDA features transforms from the feature space to a one-
dimensional distance from the hyperplane of separation. This value is used as
a measure of performance for classification.

In Figure 11a, DDA is introduced as a time domain classification frame-
work based on embedding theory in nonlinear dynamics (Kremliovsky &
Kadtke, 1997; Lainscsek, Hernandez et al., 2013; Lainscsek & Sejnowski,
2015; Lainscsek, Weyhenmeyer et al., 2013; Sampson et al., 2015). Given a
recording (here, ECoG data) from some unknown dynamical system (here,
the brain), an embedding will reveal the nonlinear invariant properties of
the system, even from a single time series (Takens, 1981). The embedding
in DDA provides a low-dimensional nonlinear functional basis onto which
the data are mapped. Since this basis is built on the dynamical structure of
the data, preprocessing of the data (such as filtering) is not necessary. DDA
yields a low number of features (around four), as compared with traditional
spectral techniques, which greatly reduces the risk of overfitting.

Another way of viewing DDA models is as sparse Volterra series
(Volterra, 1887, 1959). A general nonlinear real-valued function can be ex-
pressed as a Taylor series expansion of functionals of increasing complexity
around a fixed point. When the function represents the behavior of a dy-
namical system, the expansion becomes a Volterra series. DDA restricts
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the complexity of the analysis by using a low-dimensional sparse delay
differential equation model. In such a model, linear and nonlinear data
components are analyzed in an interconnected manner. This reduces the
computational load, and leaving some of the nonrelevant dynamics un-
modeled highly reduces the effect of artifacts and other signals unrelated
to those we aim to detect.

All of these properties make DDA well suited to the problem of spin-
dle detection. Frequency-based approaches that have often been used for
detecting spindles are sensitive to artifacts involving transient increases in
spectral power in the band of interest, and parameters often have to be
adjusted to fit individual subjects. In DDA, we train on real data from a
single subject and a single electrode and find the relevant dynamical fea-
tures for spindle identification that are highly generalizable to a wide class
of subjects and recordings.

In practice, DDA (see Figure 11a) combines a differential embedding
with a delay embedding by relating them in a polynomial function,

ẋ(t) =
I∑

i=1

ai

N∏

n=1

x(t − τn)
mn,i for τn, mn,i ∈ N0, (4.1)

where I is the number of monomials in the model, N is the number of delays
in each monomial, and mn,i is the order of the nth term in the ith monomial.
The time derivative of the data, ẋ(t), is computed with a five-point center
derivative (Miletics & Molnárka, 2005). The estimated coefficients ai for the
model, as well as the least-squares error, form the low-dimensional feature
space used for classifying the data (here, for detecting spindles). The least-
squares error is defined as

ρ =

√√√√√ 1
K

K∑

k=1

(

ẋ −
I∑

i=1

ai

N∏

n=1

x
mn,i
τn

)2

, (4.2)

where K denotes the number of time points, ẋ denotes ẋ(t), and xτn
denotes

x(t − τn).
The particular form of the polynomial in equation 4.1 was chosen after

an exhaustive search of all model forms subject to the following constraints:
model forms were constrained to two delays (N ≤ 2), three terms (I ≤ 3),
and third-order nonlinearity (

∑
n mn,i ≤ 3), and the delays were constrained

to values up to 150 time points (τn ≤ 150). For model selection, we used a
training data set with human expert–scored spindles in stereoelectroen-
cephalogram (SEEG) data sampled at 500 Hz. As shown in Figure 11b, the
best-performing model was selected using repeated random subsampling
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cross-validation (Kohavi, 1995). This method involves repeatedly dividing
the data at random into training and testing sets. Each random split assigns
70% of the data to the training set and 30% to the testing set. The model
form and values of the delays τ1 and τ2 in equation 4.3 were chosen to max-
imize the separation between spindle and nonspindle epochs. For spindle
detection, we used the model

ẋ = a1xτ1
+ a2xτ2

+ a3x2
τ1
, (4.3)

with τ1 = 19 δt and τ2 = 12 δt, where δt = 1/ fs = 2 ms. Different values
of the delays would be selected for a different sampling rate. From the
cross-validation procedure, we obtain weights using singular-value de-
composition (SVD), which we apply to the four features from this model—
a1, a2, a3, and ρ—to transform the four-dimensional feature space to a one-
dimensional distance from a hyperplane of separation. This transformation
is illustrated in Figure 11c. The small number of features is a general feature
of DDA, which has the advantages of minimizing overfitting and reducing
the influences of artifacts in the recordings. DDA is also more sensitive
than traditional methods based on frequency analysis and thresholding,
allowing spindles to be detected in most electrodes.

After selecting the model based on the SEEG training data, its perfor-
mance was evaluated on a set of 20 recordings from SEEG, ECoG, and lami-
nar electrodes. Across this data set, our DDA-based spindle detector agrees
with the expert scoring with a mean area of 0.84 under the receiver operating
characteristic (ROC) curve and a mean F1 score of 0.9. This is comparable to
or better than typical interrater agreement between human experts. Warby
et al. (2014) found a mean F1 score of 0.75 for marked spindles for a group of
24 experts as compared with the group consensus (designed to maximize
mean individual F1 score). This finding is similar to those of other studies
of human-expert sleep scoring, where typical inter rater agreement is in the
range of 72% (Basner, Griefahn, & Penzel, 2008; Danker-Hopfe et al., 2009;
Iber, 2007).

For detecting the spindles used in this analysis, we treat each channel
separately and use sliding windows of 0.25 seconds, with a 0.05 second step
size. In each window, we obtain a distance from the hyperplane as described
above, which serves as an index indicating the presence of a spindle when
it exceeds a set threshold. The threshold was set to maximize agreement
with human scoring in the training data, as measured by the area under
the ROC curve. Figure 12 shows, for two example spindles, the output
detection index from DDA, along with the raw waveform and spectrogram
for reference from one channel of ECoG data.

It is important to note that DDA is used here only to identify spindle
epochs for study, and the outputs of DDA are not used in any of the subse-
quent analysis.
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Figure 12: DDA spindle detection. The top panel shows a spectrogram of the
ECoG data for a 4 second time period in which two sleep spindles are detected.
The middle panel shows the same data in the time domain after the application
of a 60 Hz notch filter for visualization. The bottom panel shows the spin-
dle detection index from DDA; higher values above the set threshold, in red,
correspond to the presence of spindles.

4.3 Sparse Connectivity Estimation by the SRPM Method during
Sleep Spindles. After detecting the sleep spindles for each channel (see
Figure 13) as described, we selected only time windows in which spindles
were present in a relatively large number of channels. We selected 10 such
time windows and estimated the SRPM for each of them. The average num-
ber of channels in which sleep spindles were present in the selected time
windows was found to be 32.10 ± 6.78. We then applied the LMCD (Blon-
del et al., 2008; Brandes et al., 2008; Newman & Girvan, 2004; Newman,
2006; Reichardt & Bornholdt, 2006; Ronhovde & Nussinov, 2009; Sporns,
2010; Sun et al., 2009) on the SRPM to cluster similar electrodes together.
The regularization parameter λ in the SRPM method was chosen to be large
enough to minimize the intercluster connectivity after applying the LMCD,
thus clustering the brain regions with the strongest connectivity. The range
of values of λ used for the analysis was between 0.035 and 0.054. The SRPM
method was found to be fairly robust to the regularization parameter, and
small changes in the values of the regularization parameters did not signif-
icantly alter the results reported here. Figure 13 shows the clustered brain
regions in the 10 time windows considered. Note that in all of the panels in
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Figure 13: Estimating brain connectivity during sleep spindles from human
ECoG data by the SRPM method in 10 epochs from a patient. Circles denote
electrode locations, and clusters (of strongest activity) put together by the LMCD
have the same color. For example, in the left top panel, there are three clusters
of strongest activity denoted by red, blue, and green.
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Figure 14: Estimating brain connectivity during absence of spindles from hu-
man ECoG data by the SRPM method in 4 epochs from a patient. Circles denote
electrode locations, and clusters (of strongest activity) put together by the LMCD
have the same color. For example, in the left top panel, there are five clusters of
strongest activity, denoted by red, blue, green, yellow, and cyan.

Figure 13, the clusters are spatially localized, indicating spatially localized
connectivity among brain regions. The average modularity across the 10
panels was found to be 0.41 defined as

Q = 1
2M

∑

i �= j

[
Bi j −

sis j

2M

]
δ(σi, σ j), (4.4)

where Bi j denotes the strength of connectivity (obtained from the SRPM)
between brain regions i and j, si = ∑

j Bi j denotes the sum of connectivity
strengths between brain region i and the rest of the brain regions, σi denotes
the cluster to which brain region i belongs to, M = 1

2

∑
i j Bi j, and δ(σi, σ j) is 1

if σi = σ j and 0 otherwise (Blondel et al., 2008; Reichardt & Bornholdt, 2006).
Also, the number of clusters is not the same in the panels. Observe that in
different panels, different brain regions show the strongest connectivity.

We next analyzed the time windows in which sleep spindles were not
present in any of the 64 channels. We selected 21 such time windows in
total and observed that the clustered brain regions were not as spatially
localized as that of the time windows where sleep spindles were present.
Figure 14 shows the clustered brain regions in four time windows in which
there were no spindles. The average modularity across all the nonspindle
time windows (including those not shown here) was found to be 0.49. The
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number of clusters is not the same in the panels, and in different panels,
different brain regions show the strongest connectivity.

In order to quantify the degree of spatial localization in spindle and
nonspindle cases, we calculated the average relative surface area (ARSA)
for both the cases. The ARSA for the spindle case was defined to be the
average of the relative surface areas (RSAs) of all clusters across all time
windows in which spindles were present and the ARSA for the nonspindle
case was defined similarly. The RSA of a cluster was defined as

RSA = SA
TA × NA

, (4.5)

where SA denotes the the surface area spanned by the cluster, TA denotes
the total surface area spanned by all the electrodes, and NA denotes the
number of electrodes in that particular cluster. The ARSA for the spindle
case was found to be 0.010 ± 0.006, and the ARSA for the nonspindle case
was found to be 0.031 ± 0.009, which is significantly higher than that of the
spindle case. This indicates that the brain networks during sleep spindles are
highly spatially localized in comparison to during the absence of spindles.

Moreover, we applied the correlation method, and almost all brain re-
gions showed very strong connectivity after applying the LMCD on the
correlation matrix, indicating that the correlation method does not result in
sparse connectivity between brain regions.

5 Discussion

The correlation method cannot find true physical connections in a network
since two brain regions might show very high correlation even when the
two regions are not directly connected; rather, the high correlation could be
due to the strong interaction of the two regions with common input from
a third region. Although research has primarily focused on the correlation
method and conclusions have been drawn based on the results, those ex-
periments need to be repeated using our proposed approach to validate
the correctness of the findings. Researchers have proposed solutions to this
problem and have suggested using a sparse regularized inverse covariance
matrix or precision matrix (SRPM), assuming that the connectivity struc-
ture is sparse. This method yields partial correlations to measure strong
direct interactions between pairs of regions while simultaneously remov-
ing the influence of the rest of the regions, thus identifying conditionally
independent regions. Although the SRPM method and the inverse covari-
ance method have been previously applied in brain research to identify
functionally connected networks in the human brain and conclusions have
been drawn regarding how the brain processes information, more experi-
mental analyses are necessary to verify these claims.
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Thus, we generated simple artificial networks via simulation and demon-
strated through extensive analysis that the SRPM method can indeed find
the true physical connection in a network. The spring-mass model and the
two network topologies in the RC circuit model were used to evaluate the
performance of the SRPM method. We showed successfully that as long as
the connectivity structure is sparse, the SRPM method has the potential to
outperform the correlation method and the inverse covariance method. For
these two linear problems, SRPM recovered the exact network connectiv-
ity. This result is in contrast to the results in Sojoudi and Doyle (2014) and
Sojoudi (2016), where the correlation method and the inverse covariance
method gave equivalent or better performance than the SRPM method, al-
though a different algorithm was used to solve the optimization problem
in equation 1.1. Even though the algorithm in Sojoudi and Doyle (2014)
and Sojoudi (2016) promoted sparsity, it did not successfully recover the
connectivity pattern in a physical network.

The superior performance of the SRPM method on the artificial networks
encouraged us to apply the same for analyzing the human brain. We applied
the SRPM method for estimating brain connectivity during sleep spindles
from human electrocorticography (ECoG) data using an 8 × 8 electrode
array. For sleep spindle detection, we used DDA, a time domain classifica-
tion framework based on embedding theory in nonlinear dynamics. After
obtaining the SRPM during the sleep spindles, we clustered similar brain
regions of strongest activity together using the LMCD and found spatially
localized brain networks during spindles. Moreover, analyzing the time
windows in which sleep spindles were not present, we found that the clus-
ters were not as compact compared with that of the time windows where
sleep spindles were present. These findings suggest that regional interac-
tions in the cortex are stronger during sleep spindles. Moreover, this gives
us insight into local information processing during spindle activity in brain.
During sleep spindles, the connectivity pattern in the brain was transiently
synchronized, thus providing evidence for globally organized coherence
patterns. These findings on spatial localization during spindles provide us
with new insights into how sleep spindles have a major role in learning,
memory consolidation, and neuronal plasticity.

Furthermore, the clusters shown in Figure 13 obtained during sleep spin-
dles were large, and in 7 of the 10 epochs, there was a cluster that included
regions of both the temporal and prefrontal cortices. This suggests that
some of the connectivity underlying the clustering is from association fiber
bundles that project between the major cortical lobes. It is worth noting
that the comparison we are making is between spindle epochs and all other
epochs during this recording of stage 2 sleep. These nonspindle epochs,
then, can be quite heterogeneous, with various other phenomena such as
K-complexes or other slow oscillations occurring at different times through-
out. As such, we expect the connectivity pattern to change accordingly
throughout these periods. By including a number of different nonspindle
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epochs in our analysis, then, we establish a broad baseline for connectivity
during stage 2 sleep that we can then compare to the specific connectivity
patterns observed during spindles. Although the data were from a patient
with epilepsy, the recordings we analyzed were during long seizure-free
periods. Nonetheless, there is concern that the cortical sleep states may not
be normal, and further work is needed to confirm our results in healthy
control subjects. Another issue is that the ECoG recordings that we an-
alyzed were from a single patient, and hence there is a need to test our
methods in a large number of epileptic patients. It is important to note
that the inputs from the thalamus also act as common inputs to the cor-
tex and constitute latent (unobserved) variables in our analysis. In order
to estimate the connectivity by modeling the latent inputs, we have ap-
plied the sparse-plus-latent regularized precision matrix (SLRPM) method
(Chandrasekaran, Parrilo, & Willsky, 2012) on the same ECoG recordings
shown here and found very similar results to the SRPM method, which is
surprising. Hence, additional work is needed to test the SRPM and SLRPM
methods on more subjects to find conditions on the applicability of these
methods.

Recently, Brunton, Johnson, Ojemann, and Kutz (2016) used the dynamic
mode decomposition algorithm and clustering methods to characterize
brain networks during sleep spindles. Similar to our results, they found that
the brain networks during sleep spindles are spatially localized. However,
no results were reported in the absence of sleep spindles. Other researchers
(Andrillon et al., 2011) also have found similar results. Recently Muller
et al. (2016), by analyzing the phase coherence, found that sleep spindles
are associated with traveling waves, which provides further support for
our findings.

The analytical and experimental advances made in this letter on sleep,
learning, and information processing in the brain suggest a possible resolu-
tion to one of the greatest mysteries in biology: the nature and function of
sleep. The experimental results so far are incomplete and tentative, but they
should lead us toward further advances that will widen our understanding
of sleep. Additional analysis is needed to test these conclusions, and these
are reserved for future research.

Finally, the same SRPM method we have used to analyze ECoG record-
ings could also be applied to single unit recordings, local field potentials,
and fMRI data.
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hofer, J. (2004). Sleep spindles and their significance for declarative memory
consolidation. Sleep, 27 (8), 1479–1485.

Scheinberg, K., Ma, S., & Goldfarb, D. (2010). Sparse inverse covariance selection via
alternating linearization methods. In J. D. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in neural information processing
systems (pp. 2101–2109). Red Hook, NY: Curran.

Sejnowski, T. J. (1995). Neural networks: Sleep and memory. Current Biology, 5 (8),
832–834.



Precision Matrix and Sparse Brain Connectivity 641

Sejnowski, T. J., & Destexhe, A. (2000). Why do we sleep? Brain Research, 886 (1–2),
208–223.

Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., & Thase, M. E. (2007).
Increased amygdala and decreased dorsolateral prefrontal BOLD responses in
unipolar depression: Related and independent features. Biological Psychiatry, 61
(2), 198–209.

Smith, C., & Macneill, C. (1994). Impaired motor memory for a pursuit rotor task
following stage 2 sleep loss in college students. Journal of Sleep Research, 3 (4),
206–213.

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F.,
Nichols, T. E., . . . Woolrich, M. W. (2011). Network modelling methods for FMRI.
NeuroImage, 54 (2), 875–891.

Sojoudi, S. (2016). Equivalence of graphical lasso and thresholding for sparse graphs.
Journal of Machine Learning Research, 17 (115), 1–21.

Sojoudi, S., & Doyle, J. (2014). Study of the brain functional network using synthetic
data. In Proceedings of the 52nd Annual Allerton Conference on Communication, Con-
trol, and Computing (pp. 350–357). Piscataway, NJ: IEEE.
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